Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 30(12): 3639-3657, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-35949171

RESUMO

Adenovirus vector vaccines have been widely and successfully deployed in response to coronavirus disease 2019 (COVID-19). However, despite inducing potent T cell immunity, improvement of vaccine-specific antibody responses upon homologous boosting is modest compared with other technologies. Here, we describe a system enabling modular decoration of adenovirus capsid surfaces with antigens and demonstrate potent induction of humoral immunity against these displayed antigens. Ligand attachment via a covalent bond was achieved using a protein superglue, DogTag/DogCatcher (similar to SpyTag/SpyCatcher), in a rapid and spontaneous reaction requiring only co-incubation of ligand and vector components. DogTag was inserted into surface-exposed loops in the adenovirus hexon protein to allow attachment of DogCatcher-fused ligands on virus particles. Efficient coverage of the capsid surface was achieved using various ligands, with vector infectivity retained in each case. Capsid decoration shielded particles from vector neutralizing antibodies. In prime-boost regimens, adenovirus vectors decorated with the receptor-binding domain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike induced >10-fold higher SARS-CoV-2 neutralization titers compared with an undecorated vector encoding spike. Importantly, decorated vectors achieved equivalent or superior T cell immunogenicity against encoded antigens compared with undecorated vectors. We propose capsid decoration using protein superglues as a novel strategy to improve efficacy and boostability of adenovirus-based vaccines and therapeutics.


Assuntos
Vacinas contra Adenovirus , COVID-19 , Humanos , SARS-CoV-2 , Imunidade Humoral , Ligantes , COVID-19/prevenção & controle
2.
Sci Rep ; 6: 18848, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743316

RESUMO

Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine.


Assuntos
Adjuvantes Imunológicos/genética , Anticorpos Antiprotozoários/biossíntese , Imunogenicidade da Vacina , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Culicidae/efeitos dos fármacos , Culicidae/parasitologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/imunologia , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/imunologia , Humanos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/parasitologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Pichia/genética , Pichia/metabolismo , Plasmídeos/química , Plasmídeos/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinação , Vacinas Sintéticas
3.
Sci Rep ; 5: 16756, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26576856

RESUMO

Replication defective adenoviruses are promising vectors for the delivery of vaccine antigens. However, the potential of a vector to elicit transgene-specific adaptive immune responses is largely dependent on the viral serotype used. HAdV-5 (Human adenovirus C) vectors are more immunogenic than chimpanzee adenovirus vectors from species Human adenovirus E (ChAdOx1 and AdC68) in mice, though the mechanisms responsible for these differences in immunogenicity remain poorly understood. In this study, superior immunogenicity was associated with markedly higher levels of transgene expression in vivo, particularly within draining lymph nodes. To investigate the viral factors contributing to these phenotypes, we generated recombinant ChAdOx1 vectors by exchanging components of the viral capsid reported to be principally involved in cell entry with the corresponding sequences from HAdV-5. Remarkably, pseudotyping with the HAdV-5 fiber and/or penton RGD loop had little to no effect on in vivo transgene expression or transgene-specific adaptive immune responses despite considerable species-specific sequence heterogeneity in these components. Our results suggest that mechanisms governing vector transduction after intramuscular administration in mice may be different from those described in vitro.


Assuntos
Adenoviridae/imunologia , Adenovírus Humanos/imunologia , Proteínas do Capsídeo/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Receptores de Orexina/genética , Adenoviridae/genética , Adenovírus Humanos/genética , Animais , Anticorpos Antivirais/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proteínas do Capsídeo/química , Expressão Gênica , Vetores Genéticos/administração & dosagem , Humanos , Imunidade , Imunização , Injeções Intramusculares , Camundongos , Pan troglodytes , Transdução Genética , Transgenes , Vacinas/genética , Vacinas/imunologia
4.
Vaccine ; 33(9): 1121-8, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25629523

RESUMO

Adenovirus vaccine vectors generated from new viral serotypes are routinely screened in pre-clinical laboratory animal models to identify the most immunogenic and efficacious candidates for further evaluation in clinical human and veterinary settings. Here, we show that studies in a laboratory species do not necessarily predict the hierarchy of vector performance in other mammals. In mice, after intramuscular immunization, HAdV-5 (Human adenovirus C) based vectors elicited cellular and humoral adaptive responses of higher magnitudes compared to the chimpanzee adenovirus vectors ChAdOx1 and AdC68 from species Human adenovirus E. After HAdV-5 vaccination, transgene specific IFN-γ(+) CD8(+) T cell responses reached peak magnitude later than after ChAdOx1 and AdC68 vaccination, and exhibited a slower contraction to a memory phenotype. In cattle, cellular and humoral immune responses were at least equivalent, if not higher, in magnitude after ChAdOx1 vaccination compared to HAdV-5. Though we have not tested protective efficacy in a disease model, these findings have important implications for the selection of candidate vectors for further evaluation. We propose that vaccines based on ChAdOx1 or other Human adenovirus E serotypes could be at least as immunogenic as current licensed bovine vaccines based on HAdV-5.


Assuntos
Adenoviridae/genética , Portadores de Fármacos , Vetores Genéticos , Proteínas Recombinantes/imunologia , Transgenes , Vacinas Virais/imunologia , Animais , Animais de Laboratório , Linfócitos T CD8-Positivos/imunologia , Bovinos , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
5.
Virol J ; 10: 349, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24304565

RESUMO

BACKGROUND: Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. METHODS: Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. RESULTS: A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. CONCLUSIONS: Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.


Assuntos
Adenoviridae/genética , Portadores de Fármacos , Vetores Genéticos , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
6.
PLoS One ; 7(7): e40385, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808149

RESUMO

Recombinant adenoviruses are among the most promising tools for vaccine antigen delivery. Recently, the development of new vectors has focused on serotypes to which the human population is less exposed in order to circumvent pre-existing anti vector immunity. This study describes the derivation of a new vaccine vector based on a chimpanzee adenovirus, Y25, together with a comparative assessment of its potential to elicit transgene product specific immune responses in mice. The vector was constructed in a bacterial artificial chromosome to facilitate genetic manipulation of genomic clones. In order to conduct a fair head-to-head immunological comparison of multiple adenoviral vectors, we optimised a method for accurate determination of infectious titre, since this parameter exhibits profound natural variability and can confound immunogenicity studies when doses are based on viral particle estimation. Cellular immunogenicity of recombinant E1 E3-deleted vector ChAdY25 was comparable to that of other species E derived chimpanzee adenovirus vectors including ChAd63, the first simian adenovirus vector to enter clinical trials in humans. Furthermore, the prevalence of virus neutralizing antibodies (titre >1:200) against ChAdY25 in serum samples collected from two human populations in the UK and Gambia was particularly low compared to published data for other chimpanzee adenoviruses. These findings support the continued development of new chimpanzee adenovirus vectors, including ChAdY25, for clinical use.


Assuntos
Adenovirus dos Símios/genética , Adenovirus dos Símios/imunologia , Vetores Genéticos/genética , Pan troglodytes/imunologia , Pan troglodytes/virologia , Vacinas contra Adenovirus/imunologia , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Adenovirus dos Símios/patogenicidade , Animais , Anticorpos Neutralizantes/imunologia , Sequência de Bases , Feminino , Gâmbia/epidemiologia , Genes Virais/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Estudos Soroepidemiológicos , Titulometria , Reino Unido/epidemiologia , Vírion/genética
7.
PLoS One ; 7(2): e31208, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363582

RESUMO

BACKGROUND: Traditionally, vaccine development against the blood-stage of Plasmodium falciparum infection has focused on recombinant protein-adjuvant formulations in order to induce high-titer growth-inhibitory antibody responses. However, to date no such vaccine encoding a blood-stage antigen(s) alone has induced significant protective efficacy against erythrocytic-stage infection in a pre-specified primary endpoint of a Phase IIa/b clinical trial designed to assess vaccine efficacy. Cell-mediated responses, acting in conjunction with functional antibodies, may be necessary for immunity against blood-stage P. falciparum. The development of a vaccine that could induce both cell-mediated and humoral immune responses would enable important proof-of-concept efficacy studies to be undertaken to address this question. METHODOLOGY: We conducted a Phase Ia, non-randomized clinical trial in 16 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding two alleles (3D7 and FVO) of the P. falciparum blood-stage malaria antigen; apical membrane antigen 1 (AMA1). ChAd63-MVA AMA1 administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to both alleles 3D7 (median 2036 SFU/million PBMC) and FVO (median 1539 SFU/million PBMC), with a mixed CD4(+)/CD8(+) phenotype, as well as substantial AMA1-specific serum IgG responses (medians of 49 µg/mL and 41 µg/mL for 3D7 and FVO AMA1 respectively) that demonstrated growth inhibitory activity in vitro. CONCLUSIONS: ChAd63-MVA is a safe and highly immunogenic delivery platform for both alleles of the AMA1 antigen in humans which warrants further efficacy testing. ChAd63-MVA is a promising heterologous prime-boost vaccine strategy that could be applied to numerous other diseases where strong cellular and humoral immune responses are required for protection. TRIAL REGISTRATION: ClinicalTrials.gov NCT01095055.


Assuntos
Adenovirus dos Símios/genética , Antígenos de Protozoários/imunologia , Vetores Genéticos/genética , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Vaccinia virus/genética , Adolescente , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , ELISPOT , Feminino , Humanos , Imunização , Interferon gama/imunologia , Estágios do Ciclo de Vida , Malária Falciparum/imunologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/crescimento & desenvolvimento , Linfócitos T/imunologia , Adulto Jovem
8.
Mol Ther ; 19(12): 2269-76, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21862998

RESUMO

Efficacy trials of antibody-inducing protein-in-adjuvant vaccines targeting the blood-stage Plasmodium falciparum malaria parasite have so far shown disappointing results. The induction of cell-mediated responses in conjunction with antibody responses is thought to be one alternative strategy that could achieve protective efficacy in humans. Here, we prepared chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient vectors encoding the well-studied P. falciparum blood-stage malaria antigen merozoite surface protein 1 (MSP1). A phase Ia clinical trial was conducted in healthy adults of a ChAd63-MVA MSP1 heterologous prime-boost immunization regime. The vaccine was safe and generally well tolerated. Fewer systemic adverse events (AEs) were observed following ChAd63 MSP1 than MVA MSP1 administration. Exceptionally strong T-cell responses were induced, and these displayed a mixed of CD4(+) and CD8(+) phenotype. Substantial MSP1-specific serum immunoglobulin G (IgG) antibody responses were also induced, which were capable of recognizing native parasite antigen, but these did not reach titers sufficient to neutralize P. falciparum parasites in vitro. This viral vectored vaccine regime is thus a leading approach for the induction of strong cellular and humoral immunogenicity against difficult disease targets in humans. Further studies are required to assess whether this strategy can achieve protective efficacy against blood-stage malaria infection.


Assuntos
Adenoviridae/genética , Linfócitos T CD4-Positivos/imunologia , Vetores Genéticos/uso terapêutico , Malária Falciparum/imunologia , Malária Falciparum/terapia , Proteína 1 de Superfície de Merozoito/imunologia , Vaccinia virus/genética , Adjuvantes Imunológicos , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Imunidade Celular , Imunoglobulina G/imunologia , Memória Imunológica , Macaca mulatta , Malária Falciparum/sangue , Masculino , Proteína 1 de Superfície de Merozoito/sangue , Proteína 1 de Superfície de Merozoito/genética , Camundongos , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Vacinação , Adulto Jovem
9.
PLoS One ; 6(6): e20977, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698193

RESUMO

BACKGROUND: Apical membrane antigen 1 (AMA1) is a leading candidate vaccine antigen against blood-stage malaria, although to date numerous clinical trials using mainly protein-in-adjuvant vaccines have shown limited success. Here we describe the pre-clinical development and optimization of recombinant human and simian adenoviral (AdHu5 and ChAd63) and orthopoxviral (MVA) vectors encoding transgene inserts for Plasmodium falciparum AMA1 (PfAMA1). METHODOLOGY/PRINCIPAL FINDINGS: AdHu5-MVA prime-boost vaccination in mice and rabbits using these vectors encoding the 3D7 allele of PfAMA1 induced cellular immune responses as well as high-titer antibodies that showed growth inhibitory activity (GIA) against the homologous but not heterologous parasite strains. In an effort to overcome the issues of PfAMA1 antigenic polymorphism and pre-existing immunity to AdHu5, a simian adenoviral (ChAd63) vector and MVA encoding two alleles of PfAMA1 were developed. This antigen, composed of the 3D7 and FVO alleles of PfAMA1 fused in tandem and with expression driven by a single promoter, was optimized for antigen secretion and transmembrane expression. These bi-allelic PfAMA1 vaccines, when administered to mice and rabbits, demonstrated comparable immunogenicity to the mono-allelic vaccines and purified serum IgG now showed GIA against the two divergent strains of P. falciparum encoded in the vaccine. CD8(+) and CD4(+) T cell responses against epitopes that were both common and unique to the two alleles of PfAMA1 were also measured in mice. CONCLUSIONS/SIGNIFICANCE: Optimized transgene inserts encoding two divergent alleles of the same antigen can be successfully inserted into adeno- and pox-viral vaccine vectors. Adenovirus-MVA immunization leads to the induction of T cell responses common to both alleles, as well as functional antibody responses that are effective against both of the encoded strains of P. falciparum in vitro. These data support the further clinical development of these vaccine candidates in Phase I/IIa clinical trials.


Assuntos
Adenoviridae/genética , Alelos , Vetores Genéticos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Orthopoxvirus/genética , Plasmodium falciparum/genética , Transgenes , Animais , Vacinas Antimaláricas/genética , Camundongos , Plasmodium falciparum/imunologia , Coelhos
10.
J Immunol ; 185(12): 7583-95, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21098232

RESUMO

Protein-in-adjuvant formulations and viral-vectored vaccines encoding blood-stage malaria Ags have shown efficacy in rodent malaria models and in vitro assays against Plasmodium falciparum. Abs and CD4(+) T cell responses are associated with protective efficacy against blood-stage malaria, whereas CD8(+) T cells against some classical blood-stage Ags can also have a protective effect against liver-stage parasites. No subunit vaccine strategy alone has generated demonstrable high-level efficacy against blood-stage infection in clinical trials. The induction of high-level Ab responses, as well as potent T and B cell effector and memory populations, is likely to be essential to achieve immediate and sustained protective efficacy in humans. This study describes in detail the immunogenicity of vaccines against P. falciparum apical membrane Ag 1 in rhesus macaques (Macaca mulatta), including the chimpanzee adenovirus 63 (AdCh63), the poxvirus modified vaccinia virus Ankara (MVA), and protein vaccines formulated in Alhydrogel or CoVaccine HT adjuvants. AdCh63-MVA heterologous prime-boost immunization induces strong and long-lasting multifunctional CD8(+) and CD4(+) T cell responses that exhibit a central memory-like phenotype. Three-shot (AdCh63-MVA-protein) or two-shot (AdCh63-protein) regimens induce memory B cells and high-titer functional IgG responses that inhibit the growth of two divergent strains of P. falciparum in vitro. Prior immunization with adenoviral vectors of alternative human or simian serotype does not affect the immunogenicity of the AdCh63 apical membrane Ag 1 vaccine. These data encourage the further clinical development and coadministration of protein and viral vector vaccine platforms in an attempt to induce broad cellular and humoral immune responses against blood-stage malaria Ags in humans.


Assuntos
Adenoviridae , Adjuvantes Imunológicos , Antígenos de Protozoários/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Poxviridae , Proteínas de Protozoários/imunologia , Vaccinia virus , Animais , Anticorpos Antiprotozoários/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Humanos , Imunoglobulina G/imunologia , Memória Imunológica/imunologia , Macaca mulatta , Malária Falciparum/imunologia , Camundongos , Vacinas de Subunidades Antigênicas/imunologia
11.
Vaccine ; 28(44): 7167-78, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20937436

RESUMO

Subunit vaccination modalities tend to induce particular immune effector responses. Viral vectors are well known for their ability to induce strong T cell responses, while protein-adjuvant vaccines have been used primarily for induction of antibody responses. Here, we demonstrate in mice using a Plasmodium falciparum merozoite surface protein 1 (PfMSP1) antigen that novel regimes combining adenovirus and poxvirus vectored vaccines with protein antigen in Montanide ISA720 adjuvant can achieve simultaneous antibody and T cell responses which equal, or in some cases surpass, the best immune responses achieved by either the viral vectors or the protein vaccine alone. Such broad responses can be achieved either using three-stage vaccination protocols, or with an equally effective two-stage protocol in which viral vectors are admixed with protein and adjuvant, and were apparent despite the use of a protein antigen that represented only a portion of the viral vector antigen. We describe further possible advantages of viral vectors in achieving consistent antibody priming, enhanced antibody avidity, and cytophilic isotype skew. These data strengthen the evidence that tailored combinations of vaccine platforms can achieve desired combinations of immune responses, and further encourage the co-administration of antibody-inducing recombinant protein vaccines with T cell- and antibody-inducing recombinant viral vectors as one strategy that may achieve protective blood-stage malaria immunity in humans.


Assuntos
Anticorpos Antiprotozoários/sangue , Linfócitos T CD8-Positivos/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteína 1 de Superfície de Merozoito/imunologia , Adenoviridae/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Malária Falciparum/imunologia , Manitol/análogos & derivados , Manitol/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ácidos Oleicos/farmacologia , Plasmodium falciparum/imunologia , Poxviridae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA