Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
2.
JTCVS Open ; 17: 260-268, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38420555

RESUMO

Objectives: Data are scarce on whether the composition of the lung microbiome (extending from the nasopharynx to the peripheral lung tissue) varies according to histology or grade of non-small cell lung cancer. We hypothesized that the composition of the lung microbiome would vary according to the histology and the grade of non-small cell lung cancer. Methods: We collected naso-oral and central lobar (cancer affected, ipsilateral unaffected, and contralateral unaffected) bronchoalveolar lavage fluid and brushing samples from patients with clinical early-stage lung cancer between July 2018 and February 2020 at a single academic center. We performed bacterial 16S rRNA sequencing and then compared clinical and pathologic findings with microbiome signatures. Results: Samples were collected from 28 patients. Microbial composition in affected lobes displayed unique enrichment of oropharyngeal bacterial species that was significantly different compared with that from the unaffected contralateral lobes; patients with chronic obstructive pulmonary disease had similar diversity to those without chronic obstructive pulmonary disease (P = .1312). The lung microbiome diversity in patients with adenocarcinoma was similar to those with squamous cell cancer (P = .27). There were no differences in diversity or composition in the unaffected lobes of patients with adenocarcinoma versus squamous cell cancer. There was a trend toward lower lung microbial diversity in poorly differentiated adenocarcinomas compared with well-differentiated adenocarcinomas (P = .08). Conclusions: The lung microbiota differs between cancer affected and unaffected lobes in the same patient. Furthermore, poorly differentiated lung cancers were associated with lower microbial diversity. Larger studies will be required to confirm these findings.

3.
Ann Am Thorac Soc ; 20(5): 621-631, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37125997

RESUMO

Bronchoscopy for research purposes is a valuable tool to understand lung-specific biology in human participants. Despite published reports and active research protocols using this procedure in critically ill patients, no recent document encapsulates the important safety considerations and downstream applications of this procedure in this setting. The objectives were to identify safe practices for patient selection and protection of hospital staff, provide recommendations for sample procurement to standardize studies, and give guidance on sample preparation for novel research technologies. Seventeen international experts in the management of critically ill patients, bronchoscopy in clinical and research settings, and experience in patient-oriented clinical or translational research convened for a workshop. Review of relevant literature, expert presentations, and discussion generated the findings presented herein. The committee concludes that research bronchoscopy with bronchoalveolar lavage in critically ill patients on mechanical ventilation is valuable and safe in appropriately selected patients. This report includes recommendations on standardization of this procedure and prioritizes the reporting of sample management to produce more reproducible results between laboratories. This document serves as a resource to the community of researchers who endeavor to include bronchoscopy as part of their research protocols and highlights key considerations for the inclusion and safety of research participants.


Assuntos
Broncoscopia , Estado Terminal , Humanos , Lavagem Broncoalveolar , Dimercaprol , Seleção de Pacientes
4.
Ann Am Thorac Soc ; 20(3): 341-353, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36856712

RESUMO

Pneumonia imposes a significant clinical burden on people with immunocompromising conditions. Millions of individuals live with compromised immunity because of cytotoxic cancer treatments, biological therapies, organ transplants, inherited and acquired immunodeficiencies, and other immune disorders. Despite broad awareness among clinicians that these patients are at increased risk for developing infectious pneumonia, immunocompromised people are often excluded from pneumonia clinical guidelines and treatment trials. The absence of a widely accepted definition for immunocompromised host pneumonia is a significant knowledge gap that hampers consistent clinical care and research for infectious pneumonia in these vulnerable populations. To address this gap, the American Thoracic Society convened a workshop whose participants had expertise in pulmonary disease, infectious diseases, immunology, genetics, and laboratory medicine, with the goal of defining the entity of immunocompromised host pneumonia and its diagnostic criteria.


Assuntos
Síndrome da Imunodeficiência Adquirida , Transplante de Órgãos , Pneumonia , Humanos , Hospedeiro Imunocomprometido , Sociedades
5.
Cancer Rep (Hoboken) ; 6(5): e1810, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36987545

RESUMO

BACKGROUND: Human papillomavirus (HPV) is the causative agent of nearly all forms of cervical cancer, which can arise upon viral integration into the host genome and concurrent loss of viral regulatory gene E2. Gene-based delivery approaches show that E2 reintroduction reduces proliferative capacity and promotes apoptosis in vitro. AIMS: This work explored if our calcium-dependent protein-based delivery system, TAT-CaM, could deliver functional E2 protein directly into cervical cancer cells to limit proliferative capacity and induce cell death. MATERIALS AND RESULTS: TAT-CaM and the HPV16 E2 protein containing a CaM-binding sequence (CBS-E2) were expressed and purified from Escherichia coli. Calcium-dependent binding kinetics were verified by biolayer interferometry. Equimolar TAT-CaM:CBS-E2 constructs were delivered into the HPV16+ SiHa cell line and uptake verified by confocal microscopy. Proliferative capacity was measured by MTS assay and cell death was measured by release of lactate dehydrogenase. As a control, human microvascular cells (HMECs) were used. As expected, TAT-CaM bound CBS-E2 with high affinity in the presence of calcium and rapidly disassociated upon its removal. After introduction by TAT-CaM, fluorescently labeled CBS-E2 was detected in cellular interiors by orthogonal projections taken at the depth of the nucleus. In dividing cells, E2 relocalized to regions associated with the mitotic spindle. Cells receiving a daily dose of CBS-E2 for 4 days showed a significant reduction in metabolic activity at low doses and increased cell death at high doses compared to controls. This phenotype was retained for 7 days with no further treatments. When subcultured on day 12, treated cells regained their proliferative capacity. CONCLUSIONS: Using the TAT-CaM platform, bioactive E2 protein was delivered into living cervical cancer cells, inducing senescence and cell death in a time- and dose-dependent manner. These results suggest that this nucleic acid and virus-free delivery method could be harnessed to develop novel, effective protein therapeutics.


Assuntos
Peptídeos Penetradores de Células , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/terapia , Papillomavirus Humano , Cálcio , Proteínas E7 de Papillomavirus , Apoptose
7.
Commun Biol ; 5(1): 708, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840782

RESUMO

Molecular markers are essential for cancer diagnosis, clinical trial enrollment, and some surgical decision making, motivating ultra-rapid, intraoperative variant detection. Sequencing-based detection is considered the gold standard approach, but typically takes hours to perform due to time-consuming DNA extraction, targeted amplification, and library preparation times. In this work, we present a proof-of-principle approach for sub-1 hour targeted variant detection using real-time DNA sequencers. By modifying existing protocols, optimizing for diagnostic time-to-result, we demonstrate confirmation of a hot-spot mutation from tumor tissue in ~52 minutes. To further reduce time, we explore rapid, targeted Loop-mediated Isothermal Amplification (LAMP) and design a bioinformatics tool-LAMPrey-to process sequenced LAMP product. LAMPrey's concatemer aware alignment algorithm is designed to maximize recovery of diagnostically relevant information leading to a more rapid detection versus standard read alignment approaches. Using LAMPrey, we demonstrate confirmation of a hot-spot mutation (250x support) from tumor tissue in less than 30 minutes.


Assuntos
Neoplasias , Sequência de Bases , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Sensibilidade e Especificidade
9.
ERJ Open Res ; 8(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35174248

RESUMO

Despite the enormous impact on human health, acute respiratory distress syndrome (ARDS) is poorly defined, and its timely diagnosis is difficult, as is tracking the course of the syndrome. The objective of this pilot study was to explore the utility of breath collection and analysis methodologies to detect ARDS through changes in the volatile organic compound (VOC) profiles present in breath. Five male Yorkshire mix swine were studied and ARDS was induced using both direct and indirect lung injury. An automated portable gas chromatography device developed in-house was used for point of care breath analysis and to monitor swine breath hourly, starting from initiation of the experiment until the development of ARDS, which was adjudicated based on the Berlin criteria at the breath sampling points and confirmed by lung biopsy at the end of the experiment. A total of 67 breath samples (chromatograms) were collected and analysed. Through machine learning, principal component analysis and linear discrimination analysis, seven VOC biomarkers were identified that distinguished ARDS. These represent seven of the nine biomarkers found in our breath analysis study of human ARDS, corroborating our findings. We also demonstrated that breath analysis detects changes 1-6 h earlier than the clinical adjudication based on the Berlin criteria. The findings provide proof of concept that breath analysis can be used to identify early changes associated with ARDS pathogenesis in swine. Its clinical application could provide intensive care clinicians with a noninvasive diagnostic tool for early detection and continuous monitoring of ARDS.

12.
Physiol Rep ; 9(3): e14693, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33547768

RESUMO

Biological subphenotypes have been identified in acute respiratory distress syndrome (ARDS) based on two parsimonious models: the "uninflamed" and "reactive" subphenotype (cluster-model) and "hypo-inflammatory" and "hyper-inflammatory" (latent class analysis (LCA) model). The distinction between the subphenotypes is mainly driven by inflammatory and coagulation markers in plasma. However, systemic inflammation is not specific for ARDS and it is unknown whether these subphenotypes also reflect differences in the alveolar compartment. Alveolar inflammation and dysbiosis of the lung microbiome have shown to be important mediators in the development of lung injury. This study aimed to determine whether the "reactive" or "hyper-inflammatory" biological subphenotype also had higher concentrations of inflammatory mediators and enrichment of gut-associated bacteria in the lung. Levels of alveolar inflammatory mediators myeloperoxidase (MPO), surfactant protein D (SPD), interleukin (IL)-1b, IL-6, IL-10, IL-8, interferon gamma (IFN-Æ´), and tumor necrosis factor-alpha (TNFα) were determined in the mini-BAL fluid. Key features of the lung microbiome were measured: bacterial burden (16S rRNA gene copies/ml), community diversity (Shannon Diversity Index), and community composition. No statistically significant differences between the "uninflamed" and "reactive" ARDS subphenotypes were found in a selected set of alveolar inflammatory mediators and key features of the lung microbiome. LCA-derived subphenotypes and stratification based on cause of ARDS (direct vs. indirect) showed similar profiles, suggesting that current subphenotypes may not reflect the alveolar host response. It is important for future research to elucidate the pulmonary biology within each subphenotype properly, which is arguably a target for intervention.


Assuntos
Bactérias/patogenicidade , Translocação Bacteriana , Microbioma Gastrointestinal , Mediadores da Inflamação/sangue , Alvéolos Pulmonares/metabolismo , Síndrome do Desconforto Respiratório/sangue , Idoso , Bactérias/genética , Biomarcadores/sangue , Coagulação Sanguínea , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fenótipo , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/microbiologia , Ribotipagem
13.
Lancet Respir Med ; 9(6): 601-612, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33460570

RESUMO

BACKGROUND: Alterations in the respiratory microbiome are common in chronic lung diseases, correlate with decreased lung function, and have been associated with disease progression. The clinical significance of changes in the respiratory microbiome after lung transplant, specifically those related to development of chronic lung allograft dysfunction (CLAD), are unknown. The aim of this study was to evaluate the effect of lung microbiome characteristics in healthy lung transplant recipients on subsequent CLAD-free survival. METHODS: We prospectively studied a cohort of lung transplant recipients at the University of Michigan (Ann Arbor, MI, USA). We analysed characteristics of the respiratory microbiome in acellular bronchoalveolar lavage fluid (BALF) collected from asymptomatic patients during per-protocol surveillance bronchoscopy 1 year after lung transplantation. For our primary endpoint, we evaluated a composite of development of CLAD or death at 500 days after the 1-year surveillance bronchoscopy. Our primary microbiome predictor variables were bacterial DNA burden (total 16S rRNA gene copies per mL of BALF, quantified via droplet digital PCR) and bacterial community composition (determined by bacterial 16S rRNA gene sequencing). Patients' lung function was followed serially at least every 3 months by spirometry, and CLAD was diagnosed according to International Society of Heart and Lung Transplant 2019 guidelines. FINDINGS: We analysed BALF from 134 patients, collected during 1-year post-transplant surveillance bronchoscopy between Oct 21, 2005, and Aug 25, 2017. Within 500 days of follow-up from the time of BALF sampling, 24 (18%) patients developed CLAD, five (4%) died before confirmed development of CLAD, and 105 (78%) patients remained CLAD-free with complete follow-up. Lung bacterial burden was predictive of CLAD development or death within 500 days of the surveillance bronchoscopy, after controlling for demographic and clinical factors, including immunosuppression and bacterial culture results, in a multivariable survival model. This relationship was evident when burden was analysed as a continuous variable (per log10 increase in burden, HR 2·49 [95% CI 1·38-4·48], p=0·0024) or by tertiles (middle vs lowest bacterial burden tertile, HR 4·94 [1·25-19·42], p=0·022; and highest vs lowest, HR 10·56 [2·53-44·08], p=0·0012). In patients who developed CLAD or died, composition of the lung bacterial community significantly differed to that in patients who survived and remained CLAD-free (on permutational multivariate analysis of variance, p=0·047 at the taxonomic level of family), although differences in community composition were associated with bacterial burden. No individual bacterial taxa were definitively associated with CLAD development or death. INTERPRETATION: Among asymptomatic lung transplant recipients at 1-year post-transplant, increased lung bacterial burden is predictive of chronic rejection and death. The lung microbiome represents an understudied and potentially modifiable risk factor for lung allograft dysfunction. FUNDING: US National Institutes of Health, Cystic Fibrosis Foundation, Brian and Mary Campbell and Elizabeth Campbell Carr research gift fund.


Assuntos
Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/microbiologia , Transplante de Pulmão , Pulmão/microbiologia , Microbiota , Transplantados/estatística & dados numéricos , Doença Crônica , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
14.
Cancers (Basel) ; 13(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375062

RESUMO

Lung cancer is the leading cause of cancer-related death. Over the past 5-10 years lung cancer outcomes have significantly improved in part due to better treatment options including immunotherapy and molecularly targeted agents. Unfortunately, the majority of lung cancer patients do not enjoy durable responses to these new treatments. Seminal research demonstrated the importance of the gut microbiome in dictating responses to immunotherapy in melanoma patients. However, little is known regarding how other sites of microbiota in the human body affect tumorigenesis and treatment responses. The lungs were traditionally thought to be a sterile environment; however, recent research demonstrated that the lung contains its own dynamic microbiota that can influence disease and pathophysiology. Few studies have explored the role of the lung microbiome in lung cancer biology. In this review article, we discuss the links between the lung microbiota and cancer, with particular focus on immune responses, metabolism and strategies to target the lung microbiome for cancer prevention.

15.
Clin Cancer Res ; 26(23): 6266-6276, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33087334

RESUMO

PURPOSE: Pediatric high-grade glioma (pHGG) diagnosis portends poor prognosis and therapeutic monitoring remains difficult. Tumors release cell-free tumor DNA (cf-tDNA) into cerebrospinal fluid (CSF), allowing for potential detection of tumor-associated mutations by CSF sampling. We hypothesized that direct, electronic analysis of cf-tDNA with a handheld platform (Oxford Nanopore MinION) could quantify patient-specific CSF cf-tDNA variant allele fraction (VAF) with improved speed and limit of detection compared with established methods. EXPERIMENTAL DESIGN: We performed ultra-short fragment (100-200 bp) PCR amplification of cf-tDNA for clinically actionable alterations in CSF and tumor samples from patients with pHGG (n = 12) alongside nontumor CSF (n = 6). PCR products underwent rapid amplicon-based sequencing by Oxford Nanopore Technology (Nanopore) with quantification of VAF. Additional comparison to next-generation sequencing (NGS) and droplet digital PCR (ddPCR) was performed. RESULTS: Nanopore demonstrated 85% sensitivity and 100% specificity in CSF samples (n = 127 replicates) with 0.1 femtomole DNA limit of detection and 12-hour results, all of which compared favorably with NGS. Multiplexed analysis provided concurrent analysis of H3.3A (H3F3A) and H3C2 (HIST1H3B) mutations in a nonbiopsied patient and results were confirmed by ddPCR. Serial CSF cf-tDNA sequencing by Nanopore demonstrated correlation of radiological response on a clinical trial, with one patient showing dramatic multi-gene molecular response that predicted long-term clinical response. CONCLUSIONS: Nanopore sequencing of ultra-short pHGG CSF cf-tDNA fragments is feasible, efficient, and sensitive with low-input samples thus overcoming many of the barriers restricting wider use of CSF cf-tDNA diagnosis and monitoring in this patient population.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , DNA Tumoral Circulante/genética , Eletrônica , Glioma/patologia , Mutação , Adolescente , Biomarcadores Tumorais/líquido cefalorraquidiano , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Estudos de Casos e Controles , Criança , Pré-Escolar , DNA Tumoral Circulante/líquido cefalorraquidiano , Feminino , Seguimentos , Glioma/líquido cefalorraquidiano , Glioma/genética , Glioma/cirurgia , Humanos , Masculino , Reação em Cadeia da Polimerase , Prognóstico
16.
Sci Transl Med ; 12(556)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32801143

RESUMO

Inhaled oxygen, although commonly administered to patients with respiratory disease, causes severe lung injury in animals and is associated with poor clinical outcomes in humans. The relationship between hyperoxia, lung and gut microbiota, and lung injury is unknown. Here, we show that hyperoxia conferred a selective relative growth advantage on oxygen-tolerant respiratory microbial species (e.g., Staphylococcus aureus) as demonstrated by an observational study of critically ill patients receiving mechanical ventilation and experiments using neonatal and adult mouse models. During exposure of mice to hyperoxia, both lung and gut bacterial communities were altered, and these communities contributed to oxygen-induced lung injury. Disruption of lung and gut microbiota preceded lung injury, and variation in microbial communities correlated with variation in lung inflammation. Germ-free mice were protected from oxygen-induced lung injury, and systemic antibiotic treatment selectively modulated the severity of oxygen-induced lung injury in conventionally housed animals. These results suggest that inhaled oxygen may alter lung and gut microbial communities and that these communities could contribute to lung injury.


Assuntos
Microbioma Gastrointestinal , Hiperóxia , Lesão Pulmonar , Animais , Humanos , Pulmão , Lesão Pulmonar/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio
18.
Anal Bioanal Chem ; 411(24): 6435-6447, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31367803

RESUMO

Acute respiratory distress syndrome (ARDS) is the most severe form of acute lung injury, responsible for high mortality and long-term morbidity. As a dynamic syndrome with multiple etiologies, its timely diagnosis is difficult as is tracking the course of the syndrome. Therefore, there is a significant need for early, rapid detection and diagnosis as well as clinical trajectory monitoring of ARDS. Here, we report our work on using human breath to differentiate ARDS and non-ARDS causes of respiratory failure. A fully automated portable 2-dimensional gas chromatography device with high peak capacity (> 200 at the resolution of 1), high sensitivity (sub-ppb), and rapid analysis capability (~ 30 min) was designed and made in-house for on-site analysis of patients' breath. A total of 85 breath samples from 48 ARDS patients and controls were collected. Ninety-seven elution peaks were separated and detected in 13 min. An algorithm based on machine learning, principal component analysis (PCA), and linear discriminant analysis (LDA) was developed. As compared to the adjudications done by physicians based on the Berlin criteria, our device and algorithm achieved an overall accuracy of 87.1% with 94.1% positive predictive value and 82.4% negative predictive value. The high overall accuracy and high positive predicative value suggest that the breath analysis method can accurately diagnose ARDS. The ability to continuously and non-invasively monitor exhaled breath for early diagnosis, disease trajectory tracking, and outcome prediction monitoring of ARDS may have a significant impact on changing practice and improving patient outcomes. Graphical abstract.


Assuntos
Testes Respiratórios/instrumentação , Cromatografia Gasosa/instrumentação , Síndrome do Desconforto Respiratório/diagnóstico , Gasometria , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Prognóstico
20.
Am J Respir Crit Care Med ; 199(9): 1127-1138, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30789747

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) causes considerable global morbidity and mortality, and its mechanisms of disease progression are poorly understood. Recent observational studies have reported associations between lung dysbiosis, mortality, and altered host defense gene expression, supporting a role for lung microbiota in IPF. However, the causal significance of altered lung microbiota in disease progression is undetermined. Objectives: To examine the effect of microbiota on local alveolar inflammation and disease progression using both animal models and human subjects with IPF. Methods: For human studies, we characterized lung microbiota in BAL fluid from 68 patients with IPF. For animal modeling, we used a murine model of pulmonary fibrosis in conventional and germ-free mice. Lung bacteria were characterized using 16S rRNA gene sequencing with novel techniques optimized for low-biomass sample load. Microbiota were correlated with alveolar inflammation, measures of pulmonary fibrosis, and disease progression. Measurements and Main Results: Disruption of the lung microbiome predicts disease progression, correlates with local host inflammation, and participates in disease progression. In patients with IPF, lung bacterial burden predicts fibrosis progression, and microbiota diversity and composition correlate with increased alveolar profibrotic cytokines. In murine models of fibrosis, lung dysbiosis precedes peak lung injury and is persistent. In germ-free animals, the absence of a microbiome protects against mortality. Conclusions: Our results demonstrate that lung microbiota contribute to the progression of IPF. We provide biological plausibility for the hypothesis that lung dysbiosis promotes alveolar inflammation and aberrant repair. Manipulation of lung microbiota may represent a novel target for the treatment of IPF.


Assuntos
Fibrose Pulmonar Idiopática/microbiologia , Inflamação/microbiologia , Pulmão/microbiologia , Microbiota/fisiologia , Idoso , Animais , Líquido da Lavagem Broncoalveolar/microbiologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Citometria de Fluxo , Vida Livre de Germes , Humanos , Fibrose Pulmonar Idiopática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/genética , Pessoa de Meia-Idade , Alvéolos Pulmonares/microbiologia , Alvéolos Pulmonares/patologia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA