Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
Arch Biochem Biophys ; 719: 109156, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35218721

RESUMO

The human leukocyte antigen (HLA) locus encodes a large group of proteins governing adaptive and innate immune responses. Among them, HLA class II proteins form α/ß heterodimers on the membrane of professional antigen-presenting cells (APCs), where they display both, self and pathogen-derived exogenous antigens to CD4+ T lymphocytes. We have previously shown that a shorter HLA-DRA isoform (sHLA-DRA) lacking 25 amino acids can be presented onto the cell membrane via binding to canonical HLA-DR2 heterodimers. Here, we employed atomistic molecular dynamics simulations to decipher the binding position of sHLA-DRA and its structural impact on functional regions of the HLA-DR2 molecule. We show that a loop region exposed only in the short isoform (residues R69 to G83) is responsible for binding to the outer domain of the HLA-DR2 peptide-binding site, and experimentally validated the critical role of F76 in mediating such interaction. Additionally, sHLA-DRA allosterically modifies the peptide-binding pocket conformation. In summary, this study unravels key molecular mechanisms underlying sHLA-DRA function, providing important insights into the role of full-length proteins in structural modulation of HLA class II receptors.


Assuntos
Antígeno HLA-DR2 , Peptídeos , Sítios de Ligação , Cadeias alfa de HLA-DR , Antígeno HLA-DR2/química , Antígeno HLA-DR2/metabolismo , Humanos , Isoformas de Proteínas/metabolismo
3.
Mol Brain ; 14(1): 19, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33478569

RESUMO

Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system (CNS) caused by complex gene-environment interactions. ATXN1 maps to 6p22.3, within the 233 loci associated with an increased risk of developing MS. Toxic gain-of-function mutations in ATXN1 cause the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1). Conversely, ATXN1 loss-of-function is involved in Alzheimer's disease (AD) and tumorigenesis. We have recently shown that ATXN1 exerts a protective immunomodulatory activity in the MS model experimental autoimmune encephalomyelitis (EAE). Specifically, we demonstrated that mice lacking Atxn1 experience aggravated EAE due to aberrant B cell functions. Atxn1-null mice exhibit increased B cell proliferation with the concomitant expansion of specific B cell subsets including B-1a cells. This population of B cells is responsible for the production of natural immunoglobulins and has been associated with the etiology of multiple autoimmune diseases. To understand the role played by Atxn1 in these cells, we performed comprehensive transcriptomic profiling of Atxn1-null B-1a cells before and after stimulation with an encephalitogenic antigen. Importantly, we show that in this sub-population Atxn1 regulates immunoglobulin gene transcription and signaling through the B cell receptor (BCR).


Assuntos
Ataxina-1/genética , Predisposição Genética para Doença , Esclerose Múltipla/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Animais , Apresentação de Antígeno , Ataxina-1/metabolismo , Linhagem Celular , Humanos , Imunoglobulinas/metabolismo , Camundongos Knockout , Transcrição Gênica
4.
Immunology ; 162(2): 194-207, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32986852

RESUMO

Class II human leucocyte antigen (HLA) proteins are involved in the immune response by presenting pathogen-derived peptides to CD4+ T lymphocytes. At the molecular level, they are constituted by α/ß-heterodimers on the surface of professional antigen-presenting cells. Here, we report that the acceptor variant (rs8084) in the HLA-DRA gene mediates the transcription of an alternative version of the α-chain lacking 25 amino acids in its extracellular domain. Molecular dynamics simulations suggest this isoform undergoes structural refolding which in turn affects its stability and cellular trafficking. The short HLA-DRA isoform cannot reach the cell surface, although it is still able to bind the corresponding ß-chain. Conversely, it remains entrapped within the endoplasmic reticulum where it is targeted for degradation. Furthermore, we demonstrate that the short isoform can be transported to the cell membrane via interactions with the peptide-binding site of canonical HLA heterodimers. Altogether, our findings indicate that short HLA-DRA functions as a novel intact antigen for class II HLA molecules.


Assuntos
Cadeias alfa de HLA-DR/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Isoformas de Proteínas/imunologia , Adulto , Idoso , Aminoácidos/imunologia , Células Apresentadoras de Antígenos/imunologia , Sítios de Ligação/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/imunologia , Retículo Endoplasmático/imunologia , Feminino , Células HEK293 , Células HeLa , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , T-Linfocitopenia Idiopática CD4-Positiva/imunologia
5.
Proc Natl Acad Sci U S A ; 117(38): 23742-23750, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32878998

RESUMO

Ataxin-1 (ATXN1) is a ubiquitous polyglutamine protein expressed primarily in the nucleus where it binds chromatin and functions as a transcriptional repressor. Mutant forms of ataxin-1 containing expanded glutamine stretches cause the movement disorder spinocerebellar ataxia type 1 (SCA1) through a toxic gain-of-function mechanism in the cerebellum. Conversely, ATXN1 loss-of-function is implicated in cancer development and Alzheimer's disease (AD) pathogenesis. ATXN1 was recently nominated as a susceptibility locus for multiple sclerosis (MS). Here, we show that Atxn1-null mice develop a more severe experimental autoimmune encephalomyelitis (EAE) course compared to wildtype mice. The aggravated phenotype is mediated by increased T helper type 1 (Th1) cell polarization, which in turn results from the dysregulation of B cell activity. Ataxin-1 ablation in B cells leads to aberrant expression of key costimulatory molecules involved in proinflammatory T cell differentiation, including cluster of differentiation (CD)44 and CD80. In addition, comprehensive phosphoflow cytometry and transcriptional profiling link the exaggerated proliferation of ataxin-1 deficient B cells to the activation of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription (STAT) pathways. Lastly, selective deletion of the physiological binding partner capicua (CIC) demonstrates the importance of ATXN1 native interactions for correct B cell functioning. Altogether, we report a immunomodulatory role for ataxin-1 and provide a functional description of the ATXN1 locus genetic association with MS risk.


Assuntos
Ataxina-1/metabolismo , Linfócitos B/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Animais , Apresentação de Antígeno , Proliferação de Células , Encefalomielite Autoimune Experimental/fisiopatologia , Camundongos , Camundongos Knockout , Esclerose Múltipla , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 114(33): E6982-E6991, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760957

RESUMO

Proinflammatory mononuclear phagocytes (MPs) play a crucial role in the progression of multiple sclerosis (MS) and other neurodegenerative diseases. Despite advances in neuroimaging, there are currently limited available methods enabling noninvasive detection of MPs in vivo. Interestingly, upon activation and subsequent differentiation toward a proinflammatory phenotype MPs undergo metabolic reprogramming that results in increased glycolysis and production of lactate. Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) is a clinically translatable imaging method that allows noninvasive monitoring of metabolic pathways in real time. This method has proven highly useful to monitor the Warburg effect in cancer, through MR detection of increased HP [1-13C]pyruvate-to-lactate conversion. However, to date, this method has never been applied to the study of neuroinflammation. Here, we questioned the potential of 13C MRSI of HP [1-13C]pyruvate to monitor the presence of neuroinflammatory lesions in vivo in the cuprizone mouse model of MS. First, we demonstrated that 13C MRSI could detect a significant increase in HP [1-13C]pyruvate-to-lactate conversion, which was associated with a high density of proinflammatory MPs. We further demonstrated that the increase in HP [1-13C]lactate was likely mediated by pyruvate dehydrogenase kinase 1 up-regulation in activated MPs, resulting in regional pyruvate dehydrogenase inhibition. Altogether, our results demonstrate a potential for 13C MRSI of HP [1-13C]pyruvate as a neuroimaging method for assessment of inflammatory lesions. This approach could prove useful not only in MS but also in other neurological diseases presenting inflammatory components.


Assuntos
Isótopos de Carbono , Ácido Láctico , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Animais , Isótopos de Carbono/farmacocinética , Isótopos de Carbono/farmacologia , Cuprizona/efeitos adversos , Cuprizona/farmacologia , Modelos Animais de Doenças , Feminino , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/genética
7.
Hum Mol Genet ; 23(14): 3733-45, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24594842

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an incurable neurodegenerative disease caused by a pathogenic glutamine repeat expansion in the protein ataxin-1 (ATXN1). One likely mechanism mediating pathogenesis is excessive transcriptional repression induced by the expanded ATXN-1. Because ATXN1 binds HDAC3, a Class I histone deacetylase (HDAC) that we have found to be required for ATXN1-induced transcriptional repression, we tested whether genetically depleting HDAC3 improves the phenotype of the SCA1 knock-in mouse (SCA1(154Q/2Q)), the most physiologically relevant model of SCA1. Given that HDAC3 null mice are embryonic lethal, we used for our analyses a combination of HDAC3 haploinsufficient and Purkinje cell (PC)-specific HDAC3 null mice. Although deleting a single allele of HDAC3 in the context of SCA1 was insufficient to improve cerebellar and cognitive deficits of the disease, a complete loss of PC HDAC3 was highly deleterious both behaviorally, with mice showing early onset ataxia, and pathologically, with progressive histologic evidence of degeneration. Inhibition of HDAC3 may yet have a role in SCA1 therapy, but our study provides cautionary evidence that this approach could produce untoward effects. Indeed, the neurotoxic consequences of HDAC3 depletion could prove relevant, wherever pharmacologic inhibition of HDAC3 is being contemplated, in disorders ranging from cancer to neurodegeneration.


Assuntos
Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/patologia , Animais , Ataxina-1 , Ataxinas , Peso Corporal , Linhagem Celular Tumoral , Cerebelo/patologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Células HEK293 , Haploinsuficiência , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Atividade Motora , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Células de Purkinje/patologia , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA