Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Comput Biol Med ; 172: 108132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508058

RESUMO

BACKGROUND: So far, baseline Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has played a key role for the application of sophisticated artificial intelligence-based models using Convolutional Neural Networks (CNNs) to extract quantitative imaging information as earlier indicators of pathological Complete Response (pCR) achievement in breast cancer patients treated with neoadjuvant chemotherapy (NAC). However, these models did not exploit the DCE-MRI exams in their full geometry as 3D volume but analysed only few individual slices independently, thus neglecting the depth information. METHOD: This study aimed to develop an explainable 3D CNN, which fulfilled the task of pCR prediction before the beginning of NAC, by leveraging the 3D information of post-contrast baseline breast DCE-MRI exams. Specifically, for each patient, the network took in input a 3D sequence containing the tumor region, which was previously automatically identified along the DCE-MRI exam. A visual explanation of the decision-making process of the network was also provided. RESULTS: To the best of our knowledge, our proposal is competitive than other models in the field, which made use of imaging data alone, reaching a median AUC value of 81.8%, 95%CI [75.3%; 88.3%], a median accuracy value of 78.7%, 95%CI [74.8%; 82.5%], a median sensitivity value of 69.8%, 95%CI [59.6%; 79.9%] and a median specificity value of 83.3%, 95%CI [82.6%; 84.0%], respectively. The median and CIs were computed according to a 10-fold cross-validation scheme for 5 rounds. CONCLUSION: Finally, this proposal holds high potential to support clinicians on non-invasively early pursuing or changing patient-centric NAC pathways.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Humanos , Feminino , Terapia Neoadjuvante/métodos , Inteligência Artificial , Meios de Contraste/uso terapêutico , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia
2.
Sci Rep ; 13(1): 8575, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237020

RESUMO

For endocrine-positive Her2 negative breast cancer patients at an early stage, the benefit of adding chemotherapy to adjuvant endocrine therapy is not still confirmed. Several genomic tests are available on the market but are very expensive. Therefore, there is the urgent need to explore novel reliable and less expensive prognostic tools in this setting. In this paper, we shown a machine learning survival model to estimate Invasive Disease-Free Events trained on clinical and histological data commonly collected in clinical practice. We collected clinical and cytohistological outcomes of 145 patients referred to Istituto Tumori "Giovanni Paolo II". Three machine learning survival models are compared with the Cox proportional hazards regression according to time-dependent performance metrics evaluated in cross-validation. The c-index at 10 years obtained by random survival forest, gradient boosting, and component-wise gradient boosting is stabled with or without feature selection at approximately 0.68 in average respect to 0.57 obtained to Cox model. Moreover, machine learning survival models have accurately discriminated low- and high-risk patients, and so a large group which can be spared additional chemotherapy to hormone therapy. The preliminary results obtained by including only clinical determinants are encouraging. The integrated use of data already collected in clinical practice for routine diagnostic investigations, if properly analyzed, can reduce time and costs of the genomic tests.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Terapia Combinada , Hormônios , Prognóstico , Modelos de Riscos Proporcionais , Receptor ErbB-2/genética , Aprendizado de Máquina
3.
Front Med (Lausanne) ; 10: 1116354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817766

RESUMO

Introduction: Recently, accurate machine learning and deep learning approaches have been dedicated to the investigation of breast cancer invasive disease events (IDEs), such as recurrence, contralateral and second cancers. However, such approaches are poorly interpretable. Methods: Thus, we designed an Explainable Artificial Intelligence (XAI) framework to investigate IDEs within a cohort of 486 breast cancer patients enrolled at IRCCS Istituto Tumori "Giovanni Paolo II" in Bari, Italy. Using Shapley values, we determined the IDE driving features according to two periods, often adopted in clinical practice, of 5 and 10 years from the first tumor diagnosis. Results: Age, tumor diameter, surgery type, and multiplicity are predominant within the 5-year frame, while therapy-related features, including hormone, chemotherapy schemes and lymphovascular invasion, dominate the 10-year IDE prediction. Estrogen Receptor (ER), proliferation marker Ki67 and metastatic lymph nodes affect both frames. Discussion: Thus, our framework aims at shortening the distance between AI and clinical practice.

5.
Front Med (Lausanne) ; 9: 993395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213659

RESUMO

Background and purpose: Although the latest breakthroughs in radiotherapy (RT) techniques have led to a decrease in adverse event rates, these techniques are still associated with substantial toxicity, including xerostomia. Imaging biomarkers could be useful to predict the toxicity risk related to each individual patient. Our preliminary work aims to develop a radiomic-based support tool exploiting pre-treatment CT images to predict late xerostomia risk in 3 months after RT in patients with oropharyngeal cancer (OPC). Materials and methods: We performed a multicenter data collection. We enrolled 61 patients referred to three care centers in Apulia, Italy, out of which 22 patients experienced at least mild xerostomia 3 months after the end of the RT cycle. Pre-treatment CT images, clinical and dose features, and alcohol-smoking habits were collected. We proposed a transfer learning approach to extract quantitative imaging features from CT images by means of a pre-trained convolutional neural network (CNN) architecture. An optimal feature subset was then identified to train an SVM classifier. To evaluate the robustness of the proposed model with respect to different manual contouring practices on CTs, we repeated the same image analysis pipeline on "fake" parotid contours. Results: The best performances were achieved by the model exploiting the radiomic features alone. On the independent test, the model reached median AUC, accuracy, sensitivity, and specificity values of 81.17, 83.33, 71.43, and 90.91%, respectively. The model was robust with respect to diverse manual parotid contouring procedures. Conclusion: Radiomic analysis could help to develop a valid support tool for clinicians in planning radiotherapy treatment, by providing a risk score of the toxicity development for each individual patient, thus improving the quality of life of the same patient, without compromising patient care.

6.
PLoS One ; 17(9): e0274691, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36121822

RESUMO

Designing targeted treatments for breast cancer patients after primary tumor removal is necessary to prevent the occurrence of invasive disease events (IDEs), such as recurrence, metastasis, contralateral and second tumors, over time. However, due to the molecular heterogeneity of this disease, predicting the outcome and efficacy of the adjuvant therapy is challenging. A novel ensemble machine learning classification approach was developed to address the task of producing prognostic predictions of the occurrence of breast cancer IDEs at both 5- and 10-years. The method is based on the concept of voting among multiple models to give a final prediction for each individual patient. Promising results were achieved on a cohort of 529 patients, whose data, related to primary breast cancer, were provided by Istituto Tumori "Giovanni Paolo II" in Bari, Italy. Our proposal greatly improves the performances returned by the baseline original model, i.e., without voting, finally reaching a median AUC value of 77.1% and 76.3% for the IDE prediction at 5-and 10-years, respectively. Finally, the proposed approach allows to promote more intelligible decisions and then a greater acceptability in clinical practice since it returns an explanation of the IDE prediction for each individual patient through the voting procedure.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/patologia , Terapia Combinada , Feminino , Humanos , Itália , Aprendizado de Máquina
7.
J Pers Med ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35743737

RESUMO

To date, some artificial intelligence (AI) methods have exploited Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to identify finer tumor properties as potential earlier indicators of pathological Complete Response (pCR) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). However, they work either for sagittal or axial MRI protocols. More flexible AI tools, to be used easily in clinical practice across various institutions in accordance with its own imaging acquisition protocol, are required. Here, we addressed this topic by developing an AI method based on deep learning in giving an early prediction of pCR at various DCE-MRI protocols (axial and sagittal). Sagittal DCE-MRIs refer to 151 patients (42 pCR; 109 non-pCR) from the public I-SPY1 TRIAL database (DB); axial DCE-MRIs are related to 74 patients (22 pCR; 52 non-pCR) from a private DB provided by Istituto Tumori "Giovanni Paolo II" in Bari (Italy). By merging the features extracted from baseline MRIs with some pre-treatment clinical variables, accuracies of 84.4% and 77.3% and AUC values of 80.3% and 78.0% were achieved on the independent tests related to the public DB and the private DB, respectively. Overall, the presented method has shown to be robust regardless of the specific MRI protocol.

8.
Cancers (Basel) ; 14(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35565344

RESUMO

Characterization of breast cancer into intrinsic molecular profiles has allowed women to live longer, undergoing personalized treatments. With the aim of investigating the relation between different values of ki67 and the predisposition to develop a breast cancer-related IDE at different ages, we enrolled 900 patients with a first diagnosis of invasive breast cancer, and we partitioned the dataset into two sub-samples with respect to an age value equal to 50 years. For each sample, we performed a Kaplan−Meier analysis to compare the IDE-free survival curves obtained with reference to different ki67 values. The analysis on patients under 50 years old resulted in a p-value < 0.001, highlighting how the behaviors of patients characterized by a ki67 ranging from 10% to 20% and greater than 20% were statistically significantly similar. Conversely, patients over 50 years old characterized by a ki67 ranging from 10% to 20% showed an IDE-free survival probability significantly greater than patients with a ki67 greater than 20%, with a p-value of 0.01. Our work shows that the adoption of two different ki67 values, namely, 10% and 20%, might be discriminant in designing personalized treatments for patients under 50 years old and over 50 years old, respectively.

9.
Sci Rep ; 12(1): 7914, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552476

RESUMO

In breast cancer patients, an accurate detection of the axillary lymph node metastasis status is essential for reducing distant metastasis occurrence probabilities. In case of patients resulted negative at both clinical and instrumental examination, the nodal status is commonly evaluated performing the sentinel lymph-node biopsy, that is a time-consuming and expensive intraoperative procedure for the sentinel lymph-node (SLN) status assessment. The aim of this study was to predict the nodal status of 142 clinically negative breast cancer patients by means of both clinical and radiomic features extracted from primary breast tumor ultrasound images acquired at diagnosis. First, different regions of interest (ROIs) were segmented and a radiomic analysis was performed on each ROI. Then, clinical and radiomic features were evaluated separately developing two different machine learning models based on an SVM classifier. Finally, their predictive power was estimated jointly implementing a soft voting technique. The experimental results showed that the model obtained by combining clinical and radiomic features provided the best performances, achieving an AUC value of 88.6%, an accuracy of 82.1%, a sensitivity of 100% and a specificity of 78.2%. The proposed model represents a promising non-invasive procedure for the SLN status prediction in clinically negative patients.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Axila/patologia , Neoplasias da Mama/patologia , Feminino , Humanos , Linfonodos/patologia , Metástase Linfática/patologia , Biópsia de Linfonodo Sentinela/métodos , Neoplasias de Mama Triplo Negativas/patologia
10.
J BUON ; 26(3): 720-727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268926

RESUMO

PURPOSE: Sentinel lymph node biopsy (SLNB) is an invasive surgical procedure and although it has fewer complications and is less severe than axillary lymph node dissection, it is not a risk-free procedure. Large prospective trials have documented SLNB that it is considered non-therapeutic in early stage breast cancer. METHODS: Web-calculator CancerMath (CM) allows you to estimate the probability of having positive lymph nodes valued on the basis of tumour size, age, histologic type, grading, expression of estrogen receptor, progesterone receptor. We collected 595 patients referred to our Institute resulting clinically negative T1 breast cancer characterized by sentinel lymph node status, prognostic factors defined by CM and also HER2 and Ki-67. We have compared classification performances obtained by online CM application with those obtained after training its algorithm on our database. RESULTS: By training CM model on our dataset and using the same feature, adding HER2 or ki67 we reached a sensitivity median value of 71.4%, 73%, 70.4%, respectively, whereas the online one was equal to 61%, without losing specificity. The introduction of the prognostic factors Her2 and Ki67 could help improving performances on the classification of particularly type of patients. CONCLUSIONS: Although the training of the model on the sample of T1 patients has brought a significant improvement in performance, the general performance does not yet allow a clinical application of the algorithm. However, the experimental results encourage future developments aimed at introducing features of a different nature in the CM model.


Assuntos
Metástase Linfática , Modelos Teóricos , Biópsia de Linfonodo Sentinela , Linfonodo Sentinela/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico
11.
Sci Rep ; 11(1): 14123, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238968

RESUMO

The dynamic contrast-enhanced MR imaging plays a crucial role in evaluating the effectiveness of neoadjuvant chemotherapy (NAC) even since its early stage through the prediction of the final pathological complete response (pCR). In this study, we proposed a transfer learning approach to predict if a patient achieved pCR (pCR) or did not (non-pCR) by exploiting, separately or in combination, pre-treatment and early-treatment exams from I-SPY1 TRIAL public database. First, low-level features, i.e., related to local structure of the image, were automatically extracted by a pre-trained convolutional neural network (CNN) overcoming manual feature extraction. Next, an optimal set of most stable features was detected and then used to design an SVM classifier. A first subset of patients, called fine-tuning dataset (30 pCR; 78 non-pCR), was used to perform the optimal choice of features. A second subset not involved in the feature selection process was employed as an independent test (7 pCR; 19 non-pCR) to validate the model. By combining the optimal features extracted from both pre-treatment and early-treatment exams with some clinical features, i.e., ER, PgR, HER2 and molecular subtype, an accuracy of 91.4% and 92.3%, and an AUC value of 0.93 and 0.90, were returned on the fine-tuning dataset and the independent test, respectively. Overall, the low-level CNN features have an important role in the early evaluation of the NAC efficacy by predicting pCR. The proposed model represents a first effort towards the development of a clinical support tool for an early prediction of pCR to NAC.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Feminino , Humanos , Aprendizado de Máquina , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Redes Neurais de Computação , Radiografia , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Resultado do Tratamento
12.
J Oncol ; 2021: 5566508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211551

RESUMO

Background. Radiation-induced toxicity represents a crucial concern in oncological treatments of patients affected by head and neck neoplasms, due to its impact on survivors' quality of life. Published reports suggested the potential of radiomics combined with machine learning methods in the prediction and assessment of radiation-induced toxicities, supporting a tailored radiation treatment management. In this paper, we present an update of the current knowledge concerning these modern approaches. MATERIALS AND METHODS: A systematic review according to PICO-PRISMA methodology was conducted in MEDLINE/PubMed and EMBASE databases until June 2019. Studies assessing the use of radiomics combined with machine learning in predicting radiation-induced toxicity in head and neck cancer patients were specifically included. Four authors (two independently and two in concordance) assessed the methodological quality of the included studies using the Radiomic Quality Score (RQS). The overall score for each analyzed study was obtained by the sum of the single RQS items; the average and standard deviation values of the authors' RQS were calculated and reported. RESULTS: Eight included papers, presenting data on parotid glands, cochlea, masticatory muscles, and white brain matter, were specifically analyzed in this review. Only one study had an average RQS was ≤ 30% (50%), while 3 studies obtained a RQS almost ≤ 25%. Potential variability in the interpretations of specific RQS items could have influenced the inter-rater agreement in specific cases. CONCLUSIONS: Published radiomic studies provide encouraging but still limited and preliminary data that require further validation to improve the decision-making processes in preventing and managing radiation-induced toxicities.

13.
Cancers (Basel) ; 13(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064923

RESUMO

Cancer treatment planning benefits from an accurate early prediction of the treatment efficacy. The goal of this study is to give an early prediction of three-year Breast Cancer Recurrence (BCR) for patients who underwent neoadjuvant chemotherapy. We addressed the task from a new perspective based on transfer learning applied to pre-treatment and early-treatment DCE-MRI scans. Firstly, low-level features were automatically extracted from MR images using a pre-trained Convolutional Neural Network (CNN) architecture without human intervention. Subsequently, the prediction model was built with an optimal subset of CNN features and evaluated on two sets of patients from I-SPY1 TRIAL and BREAST-MRI-NACT-Pilot public databases: a fine-tuning dataset (70 not recurrent and 26 recurrent cases), which was primarily used to find the optimal subset of CNN features, and an independent test (45 not recurrent and 17 recurrent cases), whose patients had not been involved in the feature selection process. The best results were achieved when the optimal CNN features were augmented by four clinical variables (age, ER, PgR, HER2+), reaching an accuracy of 91.7% and 85.2%, a sensitivity of 80.8% and 84.6%, a specificity of 95.7% and 85.4%, and an AUC value of 0.93 and 0.83 on the fine-tuning dataset and the independent test, respectively. Finally, the CNN features extracted from pre-treatment and early-treatment exams were revealed to be strong predictors of BCR.

14.
Diagnostics (Basel) ; 11(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920221

RESUMO

Contrast-enhanced spectral mammography (CESM) is an advanced instrument for breast care that is still operator dependent. The aim of this paper is the proposal of an automated system able to discriminate benign and malignant breast lesions based on radiomic analysis. We selected a set of 58 regions of interest (ROIs) extracted from 53 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) for the breast cancer screening phase between March 2017 and June 2018. We extracted 464 features of different kinds, such as points and corners of interest, textural and statistical features from both the original ROIs and the ones obtained by a Haar decomposition and a gradient image implementation. The features data had a large dimension that can affect the process and accuracy of cancer classification. Therefore, a classification scheme for dimension reduction was needed. Specifically, a principal component analysis (PCA) dimension reduction technique that includes the calculation of variance proportion for eigenvector selection was used. For the classification method, we trained three different classifiers, that is a random forest, a naïve Bayes and a logistic regression, on each sub-set of principal components (PC) selected by a sequential forward algorithm. Moreover, we focused on the starting features that contributed most to the calculation of the related PCs, which returned the best classification models. The method obtained with the aid of the random forest classifier resulted in the best prediction of benign/malignant ROIs with median values for sensitivity and specificity of 88.37% and 100%, respectively, by using only three PCs. The features that had shown the greatest contribution to the definition of the same were almost all extracted from the LE images. Our system could represent a valid support tool for radiologists for interpreting CESM images.

15.
Front Oncol ; 11: 576007, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777733

RESUMO

The mortality associated to breast cancer is in many cases related to metastasization and recurrence. Personalized treatment strategies are critical for the outcomes improvement of BC patients and the Clinical Decision Support Systems can have an important role in medical practice. In this paper, we present the preliminary results of a prediction model of the Breast Cancer Recurrence (BCR) within five and ten years after diagnosis. The main breast cancer-related and treatment-related features of 256 patients referred to Istituto Tumori "Giovanni Paolo II" of Bari (Italy) were used to train machine learning algorithms at the-state-of-the-art. Firstly, we implemented several feature importance techniques and then we evaluated the prediction performances of BCR within 5 and 10 years after the first diagnosis by means different classifiers. By using a small number of features, the models reached highly performing results both with reference to the BCR within 5 years and within 10 years with an accuracy of 77.50% and 80.39% and a sensitivity of 92.31% and 95.83% respectively, in the hold-out sample test. Despite validation studies are needed on larger samples, our results are promising for the development of a reliable prognostic supporting tool for clinicians in the definition of personalized treatment plans.

16.
J BUON ; 26(1): 275-277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33721462

RESUMO

The prediction of lymph node involvement represents an important task which could reduce unnecessary surgery and improve the definition of oncological therapies. An artificial intelligence model able to predict it in pre-operative phase requires the interface among multiple data structures. The trade-off among time consuming, expensive and invasive methodologies is emerging in experimental setups exploited for the analysis of sentinel lymph nodes, where machine learning algorithms represent a key ingredient in recorded data elaboration. The accuracy required for clinical applications is obtainable matching different kind of data. Statistical associations of prognostic factors with symptoms and predictive models implemented also through on-line softwares represent useful diagnostic support tools which translate into patients quality of life improvement and costs reduction.


Assuntos
Neoplasias da Mama/patologia , Sistemas de Apoio a Decisões Clínicas/normas , Linfonodos/patologia , Aprendizado de Máquina/normas , Medicina de Precisão/métodos , Feminino , Humanos
17.
Cancers (Basel) ; 13(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477893

RESUMO

In the absence of lymph node abnormalities detectable on clinical examination or imaging, the guidelines provide for the dissection of the first axillary draining lymph nodes during surgery. It is not always possible to arrive at surgery without diagnostic doubts, and machine learning algorithms can support clinical decisions. The web calculator CancerMath (CM) allows you to estimate the probability of having positive lymph nodes valued on the basis of tumor size, age, histologic type, grading, expression of estrogen receptor, and progesterone receptor. We collected 993 patients referred to our institute with clinically negative results characterized by sentinel lymph node status, prognostic factors defined by CM, and also human epidermal growth factor receptor 2 (HER2) and Ki-67. Area Under the Curve (AUC) values obtained by the online CM application were comparable with those obtained after training its algorithm on our database. Nevertheless, by training the CM model on our dataset and using the same feature, we reached a sensitivity median value of 72%, whereas the online one was equal to 46%, despite a specificity reduction. We found that the addition of the prognostic factors Her2 and Ki67 could help improve performances on the classification of particular types of patients with the aim of reducing as much as possible the false positives that lead to axillary dissection. As showed by our experimental results, it is not particularly suitable for use as a support instrument for the prediction of metastatic lymph nodes on clinically negative patients.

18.
Diagnostics (Basel) ; 10(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957690

RESUMO

Contrast-Enhanced Spectral Mammography (CESM) is a recently introduced mammographic method with characteristics particularly suitable for breast cancer radiomic analysis. This work aims to evaluate radiomic features for predicting histological outcome and two cancer molecular subtypes, namely Human Epidermal growth factor Receptor 2 (HER2)-positive and triple-negative. From 52 patients, 68 lesions were identified and confirmed on histological examination. Radiomic analysis was performed on regions of interest (ROIs) selected from both low-energy (LE) and ReCombined (RC) CESM images. Fourteen statistical features were extracted from each ROI. Expression of estrogen receptor (ER) was significantly correlated with variation coefficient and variation range calculated on both LE and RC images; progesterone receptor (PR) with skewness index calculated on LE images; and Ki67 with variation coefficient, variation range, entropy and relative smoothness indices calculated on RC images. HER2 was significantly associated with relative smoothness calculated on LE images, and grading tumor with variation coefficient, entropy and relative smoothness calculated on RC images. Encouraging results for differentiation between ER+/ER-, PR+/PR-, HER2+/HER2-, Ki67+/Ki67-, High-Grade/Low-Grade and TN/NTN were obtained. Specifically, the highest performances were obtained for discriminating HER2+/HER2- (90.87%), ER+/ER- (83.79%) and Ki67+/Ki67- (84.80%). Our results suggest an interesting role for radiomics in CESM to predict histological outcomes and particular tumors' molecular subtype.

19.
Diagnostics (Basel) ; 10(5)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397505

RESUMO

The typification of breast lumps with fine-needle biopsies is often affected by inconclusive results that extend diagnostic time. Many breast centers have progressively substituted cytology with micro-histology. The aim of this study is to assess the performance of a 13G-needle biopsy using cable-free vacuum-assisted breast biopsy (VABB) technology. Two of our operators carried out 200 micro-histological biopsies using the Elite 13G-needle VABB and 1314 14-16G-needle core biopsies (CBs) on BI-RADS 3, 4, and 5 lesions. Thirty-one of the procedures were repeated following CB, eighteen following cytological biopsy, and three after undergoing both procedures. The VABB Elite procedure showed high diagnostic performance with an accuracy of 94.00%, a sensitivity of 92.30%, and a specificity of 100%, while the diagnostic underestimation was 11.00%, all significantly comparable to of the CB procedure. The VABB Elite 13G system has been shown to be a simple, rapid, reliable, and well-tolerated biopsy procedure, without any significant complications and with a diagnostic performance comparable to traditional CB procedures. The histological class change in an extremely high number of samples would suggest the use of this procedure as a second-line biopsy for suspect cases or those with indeterminate cyto-histological results.

20.
BMC Bioinformatics ; 21(Suppl 2): 91, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32164532

RESUMO

BACKGROUND: Screening programs use mammography as primary diagnostic tool for detecting breast cancer at an early stage. The diagnosis of some lesions, such as microcalcifications, is still difficult today for radiologists. In this paper, we proposed an automatic binary model for discriminating tissue in digital mammograms, as support tool for the radiologists. In particular, we compared the contribution of different methods on the feature selection process in terms of the learning performances and selected features. RESULTS: For each ROI, we extracted textural features on Haar wavelet decompositions and also interest points and corners detected by using Speeded Up Robust Feature (SURF) and Minimum Eigenvalue Algorithm (MinEigenAlg). Then a Random Forest binary classifier is trained on a subset of a sub-set features selected by two different kinds of feature selection techniques, such as filter and embedded methods. We tested the proposed model on 260 ROIs extracted from digital mammograms of the BCDR public database. The best prediction performance for the normal/abnormal and benign/malignant problems reaches a median AUC value of 98.16% and 92.08%, and an accuracy of 97.31% and 88.46%, respectively. The experimental result was comparable with related work performance. CONCLUSIONS: The best performing result obtained with embedded method is more parsimonious than the filter one. The SURF and MinEigen algorithms provide a strong informative content useful for the characterization of microcalcification clusters.


Assuntos
Mama , Calcinose/diagnóstico , Aprendizado de Máquina , Algoritmos , Área Sob a Curva , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico , Bases de Dados Factuais , Feminino , Humanos , Mamografia , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA