Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673977

RESUMO

Transient receptor potential canonical sub-family channel 3 (TRPC3) is considered to play a critical role in calcium homeostasis. However, there are no established findings in this respect with regard to TRPC6. Although the parathyroid gland is a crucial organ in calcium household regulation, little is known about the protein distribution of TRPC channels-especially TRPC3 and TRPC6-in this organ. Our aim was therefore to investigate the protein expression profile of TRPC3 and TRPC6 in healthy and diseased human parathyroid glands. Surgery samples from patients with healthy parathyroid glands and from patients suffering from primary hyperparathyroidism (pHPT) were investigated by immunohistochemistry using knockout-validated antibodies against TRPC3 and TRPC6. A software-based analysis similar to an H-score was performed. For the first time, to our knowledge, TRPC3 and TRPC6 protein expression is described here in the parathyroid glands. It is found in both chief and oxyphilic cells. Furthermore, the TRPC3 staining score in diseased tissue (pHPT) was statistically significantly lower than that in healthy tissue. In conclusion, TRPC3 and TRPC6 proteins are expressed in the human parathyroid gland. Furthermore, there is strong evidence indicating that TRPC3 plays a role in pHPT and subsequently in parathyroid hormone secretion regulation. These findings ultimately require further research in order to not only confirm our results but also to further investigate the relevance of these channels and, in particular, that of TRPC3 in the aforementioned physiological functions and pathophysiological conditions.


Assuntos
Regulação para Baixo , Hiperparatireoidismo Primário , Glândulas Paratireoides , Canais de Cátion TRPC , Canal de Cátion TRPC6 , Humanos , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Hiperparatireoidismo Primário/metabolismo , Hiperparatireoidismo Primário/genética , Hiperparatireoidismo Primário/patologia , Glândulas Paratireoides/metabolismo , Glândulas Paratireoides/patologia , Feminino , Masculino , Canal de Cátion TRPC6/metabolismo , Canal de Cátion TRPC6/genética , Pessoa de Meia-Idade , Idoso , Adulto , Imuno-Histoquímica , Hormônio Paratireóideo/metabolismo
2.
Ann Anat ; 252: 152192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977270

RESUMO

Several reports previously investigated the Transient Receptor Potential Canonical subfamily channel 3 (TRPC3) in the kidney. However, most of the conclusions are based on animal samples or cell cultures leaving the door open for human tissue investigations. Moreover, results often disagreed among investigators. Histological description is lacking since most of these studies focused on functional aspects. Nevertheless, the same reports highlighted the potential key-role of TRPC3 in renal disorders. Hence, our interest to investigate the localization of TRPC3 in human kidneys. For this purpose, both healthy mouse and human kidney samples that were originated from tumor nephrectomies have been prepared for immunohistochemical staining using a knockout-validated antibody. A blocking peptide was used to confirm antibody specificity. A normalized weighted diaminobenzidine (DAB) area score between 0 and 3 comparable to a pixelwise H-score was established and employed for semiquantitative analysis. Altogether, our results suggest that glomeruli only express little TRPC3 compared to several segments of the tubular system. Cortical and medullary proximal tubules are stained, although intracortical differences in staining exist in mice. Intermediate tubules, however, are only weakly stained. The distal tubule was studied in three localizations and staining was marked although slightly varying throughout the different subsegments. Finally, the collecting duct was also immunolabeled in both human and mouse tissue. We therefore provide evidence that TRPC3 is expressed in various localizations of both human and mouse samples. We verify results of previous studies and propose until now undescribed localizations of TRPC3 in the mouse but especially and of greater interest in the human kidney. We thereby not only support the translational concept of the TRPC3 channel as key-player in physiology and pathophysiology of the human kidney but also present new potential targets to functional analysis.


Assuntos
Técnicas de Cultura de Células , Rim , Animais , Humanos
3.
Ann Anat ; 250: 152150, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633502

RESUMO

Since the discovery of TRP proteins in 1969, during studies of the fruit fly Drosophila melanogaster, interest around them and the subfamily of TRPC channels has remained high. TRPC3 was able to be detected in a number of organs in rodents, such as rats and mice, and also in various human tissues. For the most part, these investigations were carried out using gene expression of TRPC3. Further work has already confirmed the relevance of TRPC3 in the context of neurodegenerative diseases, such as spinocerebellar ataxia, and carcinogenic entities, such as ovarian carcinoma. An association with TRPC3 has also been demonstrated for diseases that affect the liver. In order to confirm the expression of TRPC3 in the human liver, this study uses samples taken from eight (n = 8) fixated human body donors and analyzed with immunohistochemistry. In accordance with the macroscopic anatomy of the organs, six samples (n = 6) of liver tissue and three (n = 3) of gallbladder tissue were obtained. TRPC3 was clearly detected in all liver and gallbladder samples examined. Thus, it is not unlikely that TRPC3 plays a role in the extensive metabolic processes of the liver and could also serve as a target for pharmacological interventions in an imbalance of calcium homeostasis.


Assuntos
Vesícula Biliar , Canais de Cátion TRPC , Humanos , Ratos , Camundongos , Animais , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Vesícula Biliar/metabolismo , Drosophila melanogaster/metabolismo , Fígado , Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA