Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(33): 15723-15735, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30094453

RESUMO

Due to their interesting physicochemical properties, gold nanoparticles (Au-NPs) are the focus of increasing attention in the field of biomedicine and are under consideration for use in drug delivery and bioimaging, or as radiosensitizers and nano-based vaccines. Thorough evaluation of the genotoxic potential of Au-NPs is required, since damage to the genome can remain undetected in standard hazard assessments. Available genotoxicity data is either limited or contradictory. Here, we examined the influence of three surface modified 3-4 nm Au-NPs on human A549 cells, according to the reactive oxygen species (ROS) paradigm. After 24 h of Au-NP treatment, nanoparticles were taken up by cells as agglomerates; however, no influence on cell viability or inflammation was detected. No increase in ROS production was observed by H2-DCF assay; however, intracellular glutathione levels reduced over time, indicating oxidative stress. All three types of Au-NPs induced DNA damage, as detected by alkaline comet assay. The strongest genotoxic effect was observed for positively charged Au-NP I. Further analysis of Au-NP I by neutral comet assay, fluorimetric detection of alkaline DNA unwinding assay, and γH2AX staining, revealed that the induced DNA lesions were predominantly alkali-labile sites. As highly controlled repair mechanisms have evolved to remove a wide range of DNA lesions with great efficiency, it is important to focus on both acute cyto- and genotoxicity, alongside post-treatment effects and DNA repair. We demonstrate that Au-NP-induced DNA damage is largely repaired over time, indicating that the observed damage is of transient nature.


Assuntos
Dano ao DNA , Ouro/efeitos adversos , Nanopartículas Metálicas/efeitos adversos , Células A549 , Sobrevivência Celular , Ensaio Cometa , Glutationa/análise , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
2.
J Nanobiotechnology ; 15(1): 46, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637475

RESUMO

BACKGROUND: Understanding the interaction of graphene-related materials (GRM) with human cells is a key to the assessment of their potential risks for human health. There is a knowledge gap regarding the potential uptake of GRM by human intestinal cells after unintended ingestion. Therefore the aim of our study was to investigate the interaction of label-free graphene oxide (GO) with the intestinal cell line Caco-2 in vitro and to shed light on the influence of the cell phenotype given by the differentiation status on cellular uptake behaviour. RESULTS: Internalisation of two label-free GOs with different lateral size and thickness by undifferentiated and differentiated Caco-2 cells was analysed by scanning electron microscopy and transmission electron microscopy. Semi-quantification of cells associated with GRM was performed by flow cytometry. Undifferentiated Caco-2 cells showed significant amounts of cell-associated GRM, whereas differentiated Caco-2 cells exhibited low adhesion of GO sheets. Transmission electron microscopy analysis revealed internalisation of both applied GO (small and large) by undifferentiated Caco-2 cells. Even large GO sheets with lateral dimensions up to 10 µm, were found internalised by undifferentiated cells, presumably by macropinocytosis. In contrast, no GO uptake could be found for differentiated Caco-2 cells exhibiting an enterocyte-like morphology with apical brush border. CONCLUSIONS: Our results show that the internalisation of GO is highly dependent on the cell differentiation status of human intestinal cells. During differentiation Caco-2 cells undergo intense phenotypic changes which lead to a dramatic decrease in GRM internalisation. The results support the hypothesis that the cell surface topography of differentiated Caco-2 cells given by the brush border leads to low adhesion of GO sheets and sterical hindrance for material uptake. In addition, the mechanical properties of GRM, especially flexibility of the sheets, seem to be an important factor for internalisation of large GO sheets by epithelial cells. Our results highlight the importance of the choice of the in vitro model to enable better in vitro-in vivo translation.


Assuntos
Grafite/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Óxidos/metabolismo , Células CACO-2 , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Grafite/análise , Humanos , Mucosa Intestinal/ultraestrutura , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Nanoestruturas/análise , Nanoestruturas/ultraestrutura , Óxidos/análise
3.
Nanomedicine (Lond) ; 12(10): 1119-1133, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28447888

RESUMO

AIM: Nanoparticle-based drug carriers hold great promise for the development of targeted therapies in pregnancy with reduced off-target effects. Here, we performed a mechanistic in vitro study on placental localization and penetration of gold nanoparticles (AuNPs) in dependence of particle size and surface modification. MATERIALS & METHODS: AuNP uptake and penetration in human placental coculture microtissues was assessed by inductively coupled plasma-mass spectrometry, transmission electron microscopy and laser ablation-inductively coupled plasma-mass spectrometry. RESULTS: Higher uptake and deeper penetration was observed for smaller (3-4 nm) or sodium carboxylate-modified AuNPs than for larger (13-14 nm) or PEGylate AuNPs, which barely passed the trophoblast barrier layer. CONCLUSION: It is possible to steer placental uptake and penetration of AuNPs by tailoring their properties, which is a prerequisite for the development of targeted therapies in pregnancy.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Ouro/química , Ouro/farmacocinética , Nanopartículas Metálicas/química , Placenta/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Placenta/citologia , Gravidez , Propriedades de Superfície , Trofoblastos/citologia , Trofoblastos/metabolismo
4.
Part Fibre Toxicol ; 9: 17, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22624622

RESUMO

BACKGROUND: Increasing concern has been expressed regarding the potential adverse health effects that may be associated with human exposure to inhaled multi-walled carbon nanotubes (MWCNTs). Thus it is imperative that an understanding as to the underlying mechanisms and the identification of the key factors involved in adverse effects are gained. In the alveoli, MWCNTs first interact with the pulmonary surfactant. At this interface, proteins and lipids of the pulmonary surfactant bind to MWCNTs, affecting their surface characteristics. Aim of the present study was to investigate if the pre-coating of MWCNTs with pulmonary surfactant has an influence on potential adverse effects, upon both (i) human monocyte derived macrophages (MDM) monocultures, and (ii) a sophisticated in vitro model of the human epithelial airway barrier. Both in vitro systems were exposed to MWCNTs either pre-coated with a porcine pulmonary surfactant (Curosurf) or not. The effect of MWCNTs surface charge was also investigated in terms of amino (-NH2) and carboxyl (-COOH) surface modifications. RESULTS: Pre-coating of MWCNTs with Curosurf affects their oxidative potential by increasing the reactive oxygen species levels and decreasing intracellular glutathione depletion in MDM as well as decreases the release of Tumour necrosis factor alpha (TNF-α). In addition, an induction of apoptosis was observed after exposure to Curosurf pre-coated MWCNTs. In triple cell-co cultures the release of Interleukin-8 (IL-8) was increased after exposure to Curosurf pre-coated MWCNTs. Effects of the MWCNTs functionalizations were minor in both MDM and triple cell co-cultures. CONCLUSIONS: The present study clearly indicates that the pre-coating of MWCNTs with pulmonary surfactant more than the functionalization of the tubes is a key factor in determining their ability to cause oxidative stress, cytokine/chemokine release and apoptosis. Thus the coating of nano-objects with pulmonary surfactant should be considered for future lung in vitro risk assessment studies.


Assuntos
Produtos Biológicos , Materiais Revestidos Biocompatíveis/toxicidade , Macrófagos/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos , Surfactantes Pulmonares , Animais , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Técnicas de Cocultura , Glutationa/metabolismo , Humanos , Interleucina-8/metabolismo , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Nanotubos de Carbono/química , Permeabilidade/efeitos dos fármacos , Fosfolipídeos/química , Surfactantes Pulmonares/química , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Suínos , Fator de Necrose Tumoral alfa/metabolismo
5.
Toxicol Lett ; 200(3): 176-86, 2011 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-21112381

RESUMO

The close resemblance of carbon nanotubes to asbestos fibers regarding their high aspect ratio, biopersistence and reactivity increases public concerns on the widespread use of these materials. The purpose of this study was not only to address the acute adverse effects of industrially produced multiwalled carbon nanotubes (MWCNTs) on human lung and immune cells in vitro but also to further understand if their accumulation and biopersistence leads to long-term consequences or induces adaptive changes in these cells. In contrast to asbestos fibers, pristine MWCNTs did not induce overt cell death in A549 lung epithelial cells and Jurkat T lymphocytes after acute exposure to high doses of this material (up to 30 µg/ml). Nevertheless, very high levels of reactive oxygen species (ROS) and decreased metabolic activity were observed which might affect long-term viability of these cells. However, the continuous presence of low amounts of MWCNTs (0.5 µg/ml) for 6 months did not have major adverse long-term effects although large amounts of nanotubes accumulated at least in A549 cells. Moreover, MWCNTs did not appear to induce adaptive mechanisms against particle stress in long-term treated A549 cells. Our study demonstrates that despite the high potential for ROS formation, pristine MWCNTs can accumulate and persist within cells without having major long-term consequences or inducing adaptive mechanisms.


Assuntos
Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Linfócitos T/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Amianto/toxicidade , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Células Jurkat , Pulmão/citologia , Testes para Micronúcleos , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Sais de Tetrazólio , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA