Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 49: 101207, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33711555

RESUMO

OBJECTIVES: Obesity is a complex disease associated with a high risk of comorbidities. Gastric bypass surgery, an invasive procedure with low patient eligibility, is currently the most effective intervention that achieves sustained weight loss. This beneficial effect is attributed to alterations in gut hormone signaling. An attractive alternative is to pharmacologically mimic the effects of bariatric surgery by targeting several gut hormonal axes. The G protein-coupled receptor 39 (GPR39) expressed in the gastrointestinal tract has been shown to mediate ghrelin signaling and control appetite, food intake, and energy homeostasis, but the broader effect on gut hormones is largely unknown. A potent and efficacious GPR39 agonist (Cpd1324) was recently discovered, but the in vivo function was not addressed. Herein we studied the efficacy of the GPR39 agonist, Cpd1324, on metabolism and gut hormone secretion. METHODS: Body weight, food intake, and energy expenditure in GPR39 agonist-treated mice and GPR39 KO mice were studied in calorimetric cages. Plasma ghrelin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) levels were measured. Organoids generated from murine and human small intestine and mouse colon were used to study GLP-1 and PYY release. Upon GPR39 agonist administration, dynamic changes in intracellular GLP-1 content were studied via immunostaining and changes in ion transport across colonic mucosa were monitored in Ussing chambers. The G protein activation underlying GPR39-mediated selective release of gut hormones was studied using bioluminescence resonance energy transfer biosensors. RESULTS: The GPR39 KO mice displayed a significantly increased food intake without corresponding increases in respiratory exchange ratios or energy expenditure. Oral administration of a GPR39 agonist induced an acute decrease in food intake and subsequent weight loss in high-fat diet (HFD)-fed mice without affecting their energy expenditure. The tool compound, Cpd1324, increased GLP-1 secretion in the mice as well as in mouse and human intestinal organoids, but not in GPR39 KO mouse organoids. In contrast, the GPR39 agonist had no effect on PYY or GIP secretion. Transepithelial ion transport was acutely affected by GPR39 agonism in a GLP-1- and calcitonin gene-related peptide (CGRP)-dependent manner. Analysis of Cpd1324 signaling properties showed activation of Gαq and Gαi/o signaling pathways in L cells, but not Gαs signaling. CONCLUSIONS: The GPR39 agonist described in this study can potentially be used by oral administration as a weight-lowering agent due to its stimulatory effect on GLP-1 secretion, which is most likely mediated through a unique activation of Gα subunits. Thus, GPR39 agonism may represent a novel approach to effectively treat obesity through selective modulation of gastrointestinal hormonal axes.


Assuntos
Hormônios Gastrointestinais/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Regulação do Apetite , Cirurgia Bariátrica , Peso Corporal , Ingestão de Alimentos , Células Enteroendócrinas , Polipeptídeo Inibidor Gástrico/farmacologia , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Peptídeo YY/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais , Redução de Peso
2.
J Clin Endocrinol Metab ; 96(9): E1409-17, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21778222

RESUMO

OBJECTIVE: Dietary fat is thought to stimulate release of incretin hormones via activation of fatty acid receptors in the intestine. However, dietary fat (triacylglycerol) is digested to 2-monoacylglycerol and fatty acids. Activation of G protein-coupled receptor 119 (GPR119) stimulates glucagon-like peptide-1 (GLP-1) release from the intestinal L-cells. We aimed to investigate if 2-oleoyl glycerol (2OG) can activate GPR119 in vitro and stimulate GLP-1 secretion in vivo. RESEARCH DESIGN AND METHODS: Agonist activity for various lipids was tested on transiently expressed human GPR119 in COS-7 cells. The effect of a jejunal bolus of 2 g 2OG on plasma levels of GLP-1 was evaluated in eight healthy human volunteers. The effect of 2OG was compared to an equimolar amount of oleic acid, a degradation product from 2OG, and the vehicle, glycerol. Digestion of 5 ml olive oil with pancreatic lipase will result in formation of approximately 2 g 2OG and 3.2 g oleic acid. RESULTS: 2OG and other 2-monoacylglycerols increased intracellular concentrations of cAMP in GPR119-expressing COS-7 cells (2OG EC(50) = 2.5 µm). Administration of 2OG to humans significantly increased plasma GLP-1 (0-25 min) when compared to the two controls, oleic acid and vehicle. Plasma levels of glucose-dependent insulinotropic polypeptide also increased. CONCLUSION: 2OG and other 2-monoacylglycerols formed during fat digestion can activate GPR119 and cause incretin release from the human intestine. This mechanism is likely to contribute to the known stimulatory effect of dietary fat on incretin secretion, and it indicates that GPR119 is a fat sensor.


Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicerídeos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Adulto , Glicemia/metabolismo , AMP Cíclico/metabolismo , Células Enteroendócrinas/efeitos dos fármacos , Glicerídeos/farmacologia , Humanos , Masculino , Ácidos Oleicos/metabolismo , Ácidos Oleicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA