Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 141: 428-438, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29409685

RESUMO

Legionella infections are among the most important waterborne infections with constantly increasing numbers of cases in industrialized countries, as a result of aging populations, rising numbers of immunocompromised individuals and increased need for conditioned water due to climate change. Surveillance of water systems is based on microbiological culture-based techniques; however, it has been shown that high percentages of the Legionella populations in water systems are not culturable. In the past two decades, the relevance of such viable but non-culturable (VBNC) legionellae has been controversially discussed, and whether VBNC legionellae can directly infect human macrophages, the primary targets of Legionella infections, remains unclear. In this study, it was demonstrated for the first time that several starved VBNC Legionella strains (four L. pneumophila serogroup 1 strains, a serogroup 6 strain and a L. micdadei strain) can directly infect different types of human macrophages and amoebae even after one year of starvation in ultrapure water. However, under these conditions, the strains caused infection with reduced efficacy, as represented by the lower percentages of infected cells, prolonged time in co-culture and higher multiplicities of infection required. Interestingly, the VBNC cells remained mostly non-culturable even after multiplication within the host cells. Amoebal infection by starved VBNC Legionella, which likely occurs in oligotrophic biofilms, would result in an increase in the bacterial concentration in drinking-water systems. If cells remain in the VBNC state, the real number of active legionellae will be underestimated by the use of culture-based standard techniques. Thus, further quantitative research is needed in order to determine, whether and how many starved VBNC Legionella cells are able to cause disease in humans.


Assuntos
Amoeba/microbiologia , Legionella/patogenicidade , Macrófagos/microbiologia , Técnicas de Cocultura , Humanos , Legionelose , Virulência , Poluentes da Água
2.
Int Immunopharmacol ; 15(2): 400-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23347846

RESUMO

BACKGROUND: It has recently been reported that the polyphenol curcumin has pronounced anti-carcinogenic, anti-inflammatory and pro-apoptotic properties. This study investigated possible anti-inflammatory and apoptotic effects of curcumin on the human synovial fibroblast cell line MH7A, and on fibroblast-like synoviocytes (FLS) derived from patients with rheumatoid arthritis (RA). METHODS: MH7A cells and RA-FLS were stimulated either with interleukin (IL)-1ß or phorbol 12-myristate 13 acetate (PMA), and treated simultaneously or sequentially with increasing concentrations of curcumin. Release of interleukin (IL)-6 and vascular endothelial growth factor (VEGF)-A was quantified by enzyme-linked immunosorbent assays (ELISAs). In MH7A cells, modulation of the transcription factor nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPKs) such as p38 and extracellular-signal regulated kinase (ERK1/2) were analysed by a reporter gene assay and Western blot, respectively. Pro-apoptotic events were monitored by Annexin-V/7-AAD based assay. Cleavage of pro-caspase-3 and -7 was checked with specific antibodies. RESULTS: Curcumin effectively blocked IL-1ß and PMA-induced IL-6 expression both in MH7A cells and RA-FLS. VEGF-A expression could only be detected in RA-FLS and was induced by PMA, but not by IL-1ß. Furthermore, curcumin inhibited activation of NF-κB and induced dephosphorylation of ERK1/2. Treatment of FLS with high concentrations of curcumin was associated with a decrease in cell viability and induction of apoptosis. CONCLUSION: The natural compound curcumin represents strong anti-inflammatory properties and induces apoptosis in FLS. This study provides an insight into possible molecular mechanisms of this substance and suggests it as a natural remedy for the treatment of chronic inflammatory diseases like RA.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Artrite Reumatoide/tratamento farmacológico , Curcumina/administração & dosagem , Fibroblastos/efeitos dos fármacos , Polifenóis/administração & dosagem , Anti-Inflamatórios não Esteroides/efeitos adversos , Apoptose/efeitos dos fármacos , Artrite Reumatoide/imunologia , Linhagem Celular , Curcumina/efeitos adversos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/patologia , Humanos , Interleucina-1beta/imunologia , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Polifenóis/efeitos adversos , Membrana Sinovial/patologia , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA