Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2082, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059705

RESUMO

The eukaryotic replicative helicase CMG centrally orchestrates the replisome and leads the way at the front of replication forks. Understanding the motion of CMG on the DNA is therefore key to our understanding of DNA replication. In vivo, CMG is assembled and activated through a cell-cycle-regulated mechanism involving 36 polypeptides that has been reconstituted from purified proteins in ensemble biochemical studies. Conversely, single-molecule studies of CMG motion have thus far relied on pre-formed CMG assembled through an unknown mechanism upon overexpression of individual constituents. Here, we report the activation of CMG fully reconstituted from purified yeast proteins and the quantification of its motion at the single-molecule level. We observe that CMG can move on DNA in two ways: by unidirectional translocation and by diffusion. We demonstrate that CMG preferentially exhibits unidirectional translocation in the presence of ATP, whereas it preferentially exhibits diffusive motion in the absence of ATP. We also demonstrate that nucleotide binding halts diffusive CMG independently of DNA melting. Taken together, our findings support a mechanism by which nucleotide binding allows newly assembled CMG to engage with the DNA within its central channel, halting its diffusion and facilitating the initial DNA melting required to initiate DNA replication.


Assuntos
Eucariotos , Nucleotídeos , Eucariotos/metabolismo , Replicação do DNA , DNA Helicases/metabolismo , DNA/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Cell ; 186(3): 528-542.e14, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681079

RESUMO

Whole-genome duplication (WGD) is a frequent event in cancer evolution and an important driver of aneuploidy. The role of the p53 tumor suppressor in WGD has been enigmatic: p53 can block the proliferation of tetraploid cells, acting as a barrier to WGD, but can also promote mitotic bypass, a key step in WGD via endoreduplication. In wild-type (WT) p53 tumors, WGD is frequently associated with activation of the E2F pathway, especially amplification of CCNE1, encoding cyclin E1. Here, we show that elevated cyclin E1 expression causes replicative stress, which activates ATR- and Chk1-dependent G2 phase arrest. p53, via its downstream target p21, together with Wee1, then inhibits mitotic cyclin-dependent kinase activity sufficiently to activate APC/CCdh1 and promote mitotic bypass. Cyclin E expression suppresses p53-dependent senescence after mitotic bypass, allowing cells to complete endoreduplication. Our results indicate that p53 can contribute to cancer evolution through the promotion of WGD.


Assuntos
Ciclina E , Duplicação Gênica , Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Mitose , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo
3.
Nature ; 606(7916): 1007-1014, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705812

RESUMO

The activation of eukaryotic origins of replication occurs in temporally separated steps to ensure that chromosomes are copied only once per cell cycle. First, the MCM helicase is loaded onto duplex DNA as an inactive double hexamer. Activation occurs after the recruitment of a set of firing factors that assemble two Cdc45-MCM-GINS (CMG) holo-helicases. CMG formation leads to the underwinding of DNA on the path to the establishment of the replication fork, but whether DNA becomes melted at this stage is unknown1. Here we use cryo-electron microscopy to image ATP-dependent CMG assembly on a chromatinized origin, reconstituted in vitro with purified yeast proteins. We find that CMG formation disrupts the double hexamer interface and thereby exposes duplex DNA in between the two CMGs. The two helicases remain tethered, which gives rise to a splayed dimer, with implications for origin activation and replisome integrity. Inside each MCM ring, the double helix becomes untwisted and base pairing is broken. This comes as the result of ATP-triggered conformational changes in MCM that involve DNA stretching and protein-mediated stabilization of three orphan bases. Mcm2 pore-loop residues that engage DNA in our structure are dispensable for double hexamer loading and CMG formation, but are essential to untwist the DNA and promote replication. Our results explain how ATP binding nucleates origin DNA melting by the CMG and maintains replisome stability at initiation.


Assuntos
Replicação do DNA , DNA , Proteínas de Manutenção de Minicromossomo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromatina , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Técnicas In Vitro , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares , Desnaturação de Ácido Nucleico , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Biochem J ; 478(13): 2517-2531, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34198325

RESUMO

The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom compound library from which we identified dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Compostos de Anilina/farmacologia , Animais , Benzamidas/farmacologia , Chlorocebus aethiops , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/isolamento & purificação , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Sinergismo Farmacológico , Ensaios Enzimáticos , Flavinas/farmacologia , Transferência Ressonante de Energia de Fluorescência , Furanos/farmacologia , Ensaios de Triagem em Larga Escala , Concentração Inibidora 50 , Naftalenos/farmacologia , Fenantrenos/farmacologia , Quinonas/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , Bibliotecas de Moléculas Pequenas/química , Células Vero , Replicação Viral/efeitos dos fármacos
5.
Biochem J ; 478(13): 2481-2497, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34198328

RESUMO

The COVID-19 pandemic has presented itself as one of the most critical public health challenges of the century, with SARS-CoV-2 being the third member of the Coronaviridae family to cause a fatal disease in humans. There is currently only one antiviral compound, remdesivir, that can be used for the treatment of COVID-19. To identify additional potential therapeutics, we investigated the enzymatic proteins encoded in the SARS-CoV-2 genome. In this study, we focussed on the viral RNA cap methyltransferases, which play key roles in enabling viral protein translation and facilitating viral escape from the immune system. We expressed and purified both the guanine-N7 methyltransferase nsp14, and the nsp16 2'-O-methyltransferase with its activating cofactor, nsp10. We performed an in vitro high-throughput screen for inhibitors of nsp14 using a custom compound library of over 5000 pharmaceutical compounds that have previously been characterised in either clinical or basic research. We identified four compounds as potential inhibitors of nsp14, all of which also showed antiviral capacity in a cell-based model of SARS-CoV-2 infection. Three of the four compounds also exhibited synergistic effects on viral replication with remdesivir.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Exorribonucleases/antagonistas & inibidores , Metiltransferases/antagonistas & inibidores , Capuzes de RNA/metabolismo , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Antivirais/química , Clorobenzenos/farmacologia , Chlorocebus aethiops , Ensaios Enzimáticos , Exorribonucleases/genética , Exorribonucleases/isolamento & purificação , Exorribonucleases/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Indazóis/farmacologia , Indenos/farmacologia , Indóis/farmacologia , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Metiltransferases/metabolismo , Nitrilas/farmacologia , Fenotiazinas/farmacologia , Purinas/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Especificidade por Substrato , Trifluperidol/farmacologia , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/isolamento & purificação , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/isolamento & purificação , Proteínas Virais Reguladoras e Acessórias/metabolismo
6.
Nature ; 555(7695): 265-268, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29489749

RESUMO

The initiation of eukaryotic DNA replication occurs in two discrete stages: first, the minichromosome maintenance (MCM) complex assembles as a head-to-head double hexamer that encircles duplex replication origin DNA during G1 phase; then, 'firing factors' convert each double hexamer into two active Cdc45-MCM-GINS helicases (CMG) during S phase. This second stage requires separation of the two origin DNA strands and remodelling of the double hexamer so that each MCM hexamer encircles a single DNA strand. Here we show that the MCM complex, which hydrolyses ATP during double-hexamer formation, remains stably bound to ADP in the double hexamer. Firing factors trigger ADP release, and subsequent ATP binding promotes stable CMG assembly. CMG assembly is accompanied by initial DNA untwisting and separation of the double hexamer into two discrete but inactive CMG helicases. Mcm10, together with ATP hydrolysis, then triggers further DNA untwisting and helicase activation. After activation, the two CMG helicases translocate in an 'N terminus-first' direction, and in doing so pass each other within the origin; this requires that each helicase is bound entirely to single-stranded DNA. Our experiments elucidate the mechanism of eukaryotic replicative helicase activation, which we propose provides a fail-safe mechanism for bidirectional replisome establishment.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/química , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Estabilidade Enzimática , Proteínas de Manutenção de Minicromossomo/metabolismo , Conformação de Ácido Nucleico , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/química
7.
Nat Commun ; 8: 15720, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28643783

RESUMO

ORC, Cdc6 and Cdt1 act together to load hexameric MCM, the motor of the eukaryotic replicative helicase, into double hexamers at replication origins. Here we show that Cdt1 interacts with MCM subunits Mcm2, 4 and 6, which both destabilizes the Mcm2-5 interface and inhibits MCM ATPase activity. Using X-ray crystallography, we show that Cdt1 contains two winged-helix domains in the C-terminal half of the protein and a catalytically inactive dioxygenase-related N-terminal domain, which is important for MCM loading, but not for subsequent replication. We used these structures together with single-particle electron microscopy to generate three-dimensional models of MCM complexes. These show that Cdt1 stabilizes MCM in a left-handed spiral open at the Mcm2-5 gate. We propose that Cdt1 acts as a brace, holding MCM open for DNA entry and bound to ATP until ORC-Cdc6 triggers ATP hydrolysis by MCM, promoting both Cdt1 ejection and MCM ring closure.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/genética , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Hidrólise , Microscopia Eletrônica , Modelos Moleculares , Complexo de Reconhecimento de Origem/metabolismo , Conformação Proteica , Domínios Proteicos , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/genética
8.
Mol Cell ; 65(1): 117-130, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27989438

RESUMO

The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo.


Assuntos
Cromatina/genética , Replicação do DNA , DNA Fúngico/genética , Nucleossomos/genética , Origem de Replicação , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
9.
Curr Opin Struct Biol ; 37: 145-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26866665

RESUMO

Precise replication of the eukaryotic genome is achieved primarily through strict regulation of the enzyme responsible for DNA unwinding, the replicative helicase. The motor of this helicase is a hexameric AAA+ ATPase called MCM. The loading of MCM onto DNA and its subsequent activation and disassembly are each restricted to separate cell cycle phases; this ensures that a functional replisome is only built once at any replication origin. In recent years, biochemical and structural studies have shown that distinct conformational changes in MCM, each requiring post-translational modifications and/or the activity of other replication proteins, define the various stages of the chromosome replication cycle. Here, we review recent progress in this area.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Cromossomos , DNA/química , Ativação Enzimática , Processamento de Proteína Pós-Traducional
10.
Nature ; 519(7544): 431-5, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25739503

RESUMO

Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.


Assuntos
Replicação do DNA , Origem de Replicação/fisiologia , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/enzimologia
11.
Mol Cell ; 55(5): 666-77, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25087873

RESUMO

Loading of the six related Minichromosome Maintenance (MCM) proteins as head-to-head double hexamers during DNA replication origin licensing is crucial for ensuring once-per-cell-cycle DNA replication in eukaryotic cells. Assembly of these prereplicative complexes (pre-RCs) requires the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ORC, Cdc6, and MCM are members of the AAA+ family of ATPases, and pre-RC assembly requires ATP hydrolysis. Here we show that ORC and Cdc6 mutants defective in ATP hydrolysis are competent for origin licensing. However, ATP hydrolysis by Cdc6 is required to release nonproductive licensing intermediates. We show that ATP binding stabilizes the wild-type MCM hexamer. Moreover, by analyzing MCM containing mutant subunits, we show that ATP binding and hydrolysis by MCM are required for Cdt1 release and double hexamer formation. This work alters our view of how ATP is used by licensing factors to assemble pre-RCs.


Assuntos
Trifosfato de Adenosina/metabolismo , Replicação do DNA/fisiologia , Proteínas de Manutenção de Minicromossomo/fisiologia , Origem de Replicação , Trifosfato de Adenosina/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Hidrólise , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Dados de Sequência Molecular , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Complexo de Reconhecimento de Origem/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Alinhamento de Sequência
12.
Curr Biol ; 24(10): R435-44, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24845676

RESUMO

DNA replication must be tightly regulated to ensure that the genome is accurately duplicated during each cell cycle. When these regulatory mechanisms fail, replicative stress and DNA damage ensue. Activated oncogenes promote replicative stress, inducing a DNA damage response (DDR) early in tumorigenesis. Senescence or apoptosis result, forming a barrier against tumour progression. This may provide a selective pressure for acquisition of mutations in the DDR pathway during tumorigenesis. Despite its potential importance in early cancer development, the precise nature of oncogene-induced replicative stress remains poorly understood. Here, we review our current understanding of replication initiation and its regulation, describe mechanisms by which activated oncogenes might interfere with these processes and discuss how replicative stress might contribute to the genomic instability seen in cancers.


Assuntos
Transformação Celular Neoplásica/genética , Replicação do DNA , Oncogenes/genética , Animais , Dano ao DNA , Instabilidade Genômica , Humanos
13.
Science ; 340(6135): 981-4, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23704573

RESUMO

Treslin/TICRR (TopBP1-interacting, replication stimulating protein/TopBP1-interacting, checkpoint, and replication regulator), the human ortholog of the yeast Sld3 protein, is an essential DNA replication factor that is regulated by cyclin-dependent kinases and the DNA damage checkpoint. We identified MDM two binding protein (MTBP) as a factor that interacts with Treslin/TICRR throughout the cell cycle. We show that MTBP depletion by means of small interfering RNA inhibits DNA replication by preventing assembly of the CMG (Cdc45-MCM-GINS) holohelicase during origin firing. Although MTBP has been implicated in the function of the p53 tumor suppressor, we found MTBP is required for DNA replication irrespective of a cell's p53 status. We propose that MTBP acts with Treslin/TICRR to integrate signals from cell cycle and DNA damage response pathways to control the initiation of DNA replication in human cells.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/fisiologia , Origem de Replicação , Proteínas de Transporte/genética , Cromatina/metabolismo , Dano ao DNA , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Células HeLa , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
14.
Nature ; 495(7441): 339-43, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23474987

RESUMO

The regulated loading of the Mcm2-7 DNA helicase (comprising six related subunits, Mcm2 to Mcm7) into pre-replicative complexes at multiple replication origins ensures precise once per cell cycle replication in eukaryotic cells. The origin recognition complex (ORC), Cdc6 and Cdt1 load Mcm2-7 into a double hexamer bound around duplex DNA in an ATP-dependent reaction, but the molecular mechanism of this origin 'licensing' is still poorly understood. Here we show that both Mcm2-7 hexamers in Saccharomyces cerevisiae are recruited to origins by an essential, conserved carboxy-terminal domain of Mcm3 that interacts with and stimulates the ATPase activity of ORC-Cdc6. ATP hydrolysis can promote Mcm2-7 loading, but can also promote Mcm2-7 release if components are missing or if ORC has been inactivated by cyclin-dependent kinase phosphorylation. Our work provides new insights into how origins are licensed and reveals a novel ATPase-dependent mechanism contributing to precise once per cell cycle replication.


Assuntos
Adenosina Trifosfatases/metabolismo , Replicação do DNA/genética , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Hidrólise , Componente 3 do Complexo de Manutenção de Minicromossomo , Componente 7 do Complexo de Manutenção de Minicromossomo , Proteínas Nucleares/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
15.
Philos Trans R Soc Lond B Biol Sci ; 366(1584): 3545-53, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22084381

RESUMO

Origins of DNA replication must be regulated to ensure that the entire genome is replicated precisely once in each cell cycle. In human cells, this requires that tens of thousands of replication origins are activated exactly once per cell cycle. Failure to do so can lead to cell death or genome rearrangements such as those associated with cancer. Systems ensuring efficient initiation of replication, while also providing a robust block to re-initiation, play a crucial role in genome stability. In this review, I will discuss some of the strategies used by cells to ensure once per cell cycle replication and provide a quantitative framework to evaluate the relative importance and efficiency of individual pathways involved in this regulation.


Assuntos
Replicação do DNA , Eucariotos/genética , Animais , Bactérias/genética , Bactérias/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Eucariotos/metabolismo , Humanos , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação
16.
Curr Biol ; 21(13): 1152-7, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21700459

RESUMO

Cyclin-dependent kinases (CDKs) play crucial roles in promoting DNA replication and preventing rereplication in eukaryotic cells [1-4]. In budding yeast, CDKs promote DNA replication by phosphorylating two proteins, Sld2 and Sld3, which generates binding sites for pairs of BRCT repeats (breast cancer gene 1 [BRCA1] C terminal repeats) in the Dpb11 protein [5, 6]. The Sld3-Dpb11-Sld2 complex generated by CDK phosphorylation is required for the assembly and activation of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase. In response to DNA replication stress, the interaction between Sld3 and Dpb11 is blocked by the checkpoint kinase Rad53 [7], which prevents late origin firing [7, 8]. Here we show that the two key CDK sites in Sld3 are conserved in the human Sld3-related protein Treslin/ticrr and are essential for DNA replication. Moreover, phosphorylation of these two sites mediates interaction with the orthologous pair of BRCT repeats in the human Dpb11 ortholog, TopBP1. Finally, we show that DNA replication stress prevents the interaction between Treslin/ticrr and TopBP1 via the Chk1 checkpoint kinase. Our results indicate that Treslin/ticrr is a genuine ortholog of Sld3 and that the Sld3-Dpb11 interaction has remained a critical nexus of S phase regulation through eukaryotic evolution.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Replicação do DNA/fisiologia , Evolução Molecular , Proteínas Fúngicas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Leveduras/genética , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Sequência Conservada , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
17.
Genes Dev ; 22(13): 1816-27, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18593882

RESUMO

The DNA damage checkpoint plays a crucial role in maintaining functional DNA replication forks when cells are exposed to genotoxic agents. In budding yeast, the protein kinases Mec1 (ATR) and Rad53 (Chk2) are especially important in this process. How these kinases act to stabilize DNA replication forks is currently unknown but is likely to have important implications for understanding how genomic instability is generated during oncogenesis and how chemotherapies that interfere with DNA replication could be improved. Here we show that the sensitivity of rad53 mutants to DNA-damaging agents can be almost completely suppressed by deletion of the EXO1 gene, which encodes an enigmatic flap endonuclease. Deletion of EXO1 also suppresses DNA replication fork instability in rad53 mutants. Surprisingly, deletion of EXO1 is completely ineffective in suppressing both the sensitivity and replication fork breakdown in mec1 mutants, indicating that Mec1 has a genetically separable role in replication fork stabilization from Rad53. Finally, our analysis indicates that a second downstream effector kinase, Chk1, can stabilize replication forks in the absence of Rad53. These results reveal previously unappreciated complexity in the downstream targets of the checkpoint kinases and provide a framework for elucidating the mechanisms of DNA replication fork stabilization by these kinases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , Proteínas Quinases/metabolismo , Antineoplásicos Alquilantes/farmacologia , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metanossulfonato de Metila/farmacologia , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Cell ; 122(6): 915-26, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16153703

RESUMO

Cyclin-dependent kinases (CDKs) restrict DNA replication origin firing to once per cell cycle by preventing the assembly of prereplicative complexes (pre-RCs; licensing) outside of G1 phase. Paradoxically, under certain circumstances, CDKs such as cyclin E-cdk2 are also required to promote licensing. Here, we show that CDK phosphorylation of the essential licensing factor Cdc6 stabilizes it by preventing its association with the anaphase promoting complex/cyclosome (APC/C). APC/C-dependent Cdc6 proteolysis prevents pre-RC assembly in quiescent cells and, when cells reenter the cell cycle from quiescence, CDK-dependent Cdc6 stabilization allows Cdc6 to accumulate before the licensing inhibitors geminin and cyclin A which are also APC/C substrates. This novel mechanism for regulating protein stability establishes a window of time prior to S phase when pre-RCs can assemble which we propose represents a critical function of cyclin E.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Proteínas Nucleares/metabolismo , Origem de Replicação/fisiologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Fosforilação , Origem de Replicação/genética , Fase S
19.
Genes Dev ; 16(20): 2639-49, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12381663

RESUMO

Although genomic instability is a hallmark of human cancer cells, the mechanisms by which genomic instability is generated and selected for during oncogenesis remain obscure. In most human cancers, the pathway leading to the activation of the G1 cyclins is deregulated. Using budding yeast as a model, we show that overexpression of the G1 cyclin Cln2 inhibits the assembly of prereplicative complexes (pre-RCs) and induces gross chromosome rearrangements (GCR). Our results suggest that deregulation of G1 cyclins, selected for in oncogenesis because it confers clonal growth advantage, may also provide an important mechanism for generating genomic instability by inhibiting replication licensing.


Assuntos
Ciclo Celular/fisiologia , Aberrações Cromossômicas , Ciclinas/metabolismo , Replicação do DNA/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas Cromossômicas não Histona , Cromossomos Fúngicos , Ciclina B/genética , Ciclina B/metabolismo , Ciclina G , Ciclina G1 , Proteínas Inibidoras de Quinase Dependente de Ciclina , Ciclinas/genética , Pegada de DNA , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Humanos , Immunoblotting , Hibridização de Ácido Nucleico , Plasmídeos , Saccharomyces cerevisiae/genética , Tripeptidil-Peptidase 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA