Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nanoscale ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171675

RESUMO

Pollution from micro- and nanoplastics (MNPs) has long been a topic of concern due to its potential impact on human health. MNPs can circulate through human blood and, thus far, have been found in the lungs, spleen, stomach, liver, kidneys and even in the brain, placenta, and breast milk. While data are already available on the adverse biological effects of pristine MNPs (e.g. oxidative stress, inflammation, cytotoxicity, and even cancer induction), no report thus far clarified whether the same effects are modulated by the formation of a protein corona around MNPs. To this end, here we use pristine and human-plasma pre-coated polystyrene (PS) nanoparticles (NPs) and investigate them in cultured breast cancer cells both in terms of internalization and cell biochemical response to the exposure. It is found that pristine NPs tend to stick to the cell membrane and inhibit HER-2-driven signaling pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways, which are associated with cancer cell survival and growth. By contrast, the formation of a protein corona around the same NPs can promote their uptake by endocytic vesicles and final sequestration within lysosomes. Of note is that such intracellular fate of PS-NPs is associated with mitigation of the biochemical alterations of the phosphorylated AKT (pAKT)/AKT and phosphorylated ERK (pERK)/ERK levels. These findings provide the distribution of NPs in human breast cancer cells, may broaden our understanding of the interactions between NPs and breast cancer cells and underscore the crucial role of the protein corona in modulating the impact of MNPs on human health.

2.
Cancers (Basel) ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37296945

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease, for which mortality closely parallels incidence. So far, the available techniques for PDAC detection are either too invasive or not sensitive enough. To overcome this limitation, here we present a multiplexed point-of-care test that provides a "risk score" for each subject under investigation, by combining systemic inflammatory response biomarkers, standard laboratory tests, and the most recent nanoparticle-enabled blood (NEB) tests. The former parameters are routinely evaluated in clinical practice, whereas NEB tests have been recently proven as promising tools to assist in PDAC diagnosis. Our results revealed that PDAC patients and healthy subjects can be distinguished accurately (i.e., 88.9% specificity, 93.6% sensitivity) by the presented multiplexed point-of-care test, in a quick, non-invasive, and highly cost-efficient way. Furthermore, the test allows for the definition of a "risk threshold", which can help clinicians to trace the optimal diagnostic and therapeutic care pathway for each patient. For these reasons, we envision that this work may accelerate progress in the early detection of PDAC and contribute to the design of screening programs for high-risk populations.

3.
Toxicol In Vitro ; 91: 105632, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37329963

RESUMO

Plastic pollution poses a significant threat to both ecosystems and human health, as fragments of microscale size are daily inhaled and ingested. Such tiny specks are defined as microplastics (MPs), and although their presence as environmental contaminants is ubiquitous in the world, their possible effects at biological and physiological levels are still not clear. To explore the potential impacts of MP exposure, we produced and characterized polyethylene terephthalate (PET) micro-fragments, then administered them to living cells. PET is widely employed in the production of plastic bottles, and thus represents a potential source of environmental MPs. However, its potential effects on public health are hardly investigated, as the current bio-medical research on MPs mainly utilizes different models, such as polystyrene particles. This study employed cell viability assays and Western blot analysis to demonstrate cell-dependent and dose-dependent cytotoxic effects of PET MPs, as well as a significant impact on HER-2-driven signaling pathways. Our findings provide insight into the biological effects of MP exposure, particularly for a widely used but poorly investigated material such as PET.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Polietilenotereftalatos/toxicidade , Ecossistema , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental
4.
ACS Appl Mater Interfaces ; 14(51): 56666-56677, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524967

RESUMO

Lipid nanoparticles (LNPs) are currently having an increasing impact on nanomedicines as delivery agents, among others, of RNA molecules (e.g., short interfering RNA for the treatment of hereditary diseases or messenger RNA for the development of COVID-19 vaccines). Despite this, the delivery of plasmid DNA (pDNA) by LNPs in preclinical studies is still unsatisfactory, mainly due to the lack of systematic structural and functional studies on DNA-loaded LNPs. To tackle this issue, we developed, characterized, and tested a library of 16 multicomponent DNA-loaded LNPs which were prepared by microfluidics and differed in lipid composition, surface functionalization, and manufacturing factors. 8 out of 16 formulations exhibited proper size and zeta potential and passed to the validation step, that is, the simultaneous quantification of transfection efficiency and cell viability in human embryonic kidney cells (HEK-293). The most efficient formulation (LNP15) was then successfully validated both in vitro, in an immortalized adult keratinocyte cell line (HaCaT) and in an epidermoid cervical cancer cell line (CaSki), and in vivo as a nanocarrier to deliver a cancer vaccine against the benchmark target tyrosine-kinase receptor HER2 in C57BL/6 mice. Finally, by a combination of confocal microscopy, transmission electron microscopy and synchrotron small-angle X-ray scattering, we were able to show that the superior efficiency of LNP15 can be linked to its disordered nanostructure consisting of small-size unoriented layers of pDNA sandwiched between closely apposed lipid membranes that undergo massive destabilization upon interaction with cellular lipids. Our results provide new insights into the structure-activity relationship of pDNA-loaded LNPs and pave the way to the clinical translation of this gene delivery technology.


Assuntos
COVID-19 , Nanopartículas , Animais , Camundongos , Humanos , Vacinas contra COVID-19 , Células HEK293 , Lipídeos/química , Camundongos Endogâmicos C57BL , DNA/química , Nanopartículas/química , RNA Interferente Pequeno
5.
Cancers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36230585

RESUMO

The development of new tools for the early detection of pancreatic ductal adenocarcinoma (PDAC) represents an area of intense research. Recently, the concept has emerged that multiplexed detection of different signatures from a single biospecimen (e.g., saliva, blood, etc.) may exhibit better diagnostic capability than single biomarkers. In this work, we develop a multiplexed strategy for detecting PDAC by combining characterization of the nanoparticle (NP)-protein corona, i.e., the protein layer that surrounds NPs upon exposure to biological fluids and circulating levels of plasma proteins belonging to the acute phase protein (APPs) family. As a first step, we developed a nanoparticle-enabled blood (NEB) test that employed 600 nm graphene oxide (GO) nanosheets and human plasma (HP) (5% vol/vol) to produce 75 personalized protein coronas (25 from healthy subjects and 50 from PDAC patients). Isolation and characterization of protein corona patterns by 1-dimensional (1D) SDS-PAGE identified significant differences in the abundance of low-molecular-weight corona proteins (20-30 kDa) between healthy subjects and PDAC patients. Coupling the outcomes of the NEB test with the circulating levels of alpha 2 globulins, we detected PDAC with a global capacity of 83.3%. Notably, a version of the multiplexed detection strategy run on sex-disaggregated data provided substantially better classification accuracy for men (93.1% vs. 77.8%). Nanoliquid chromatography tandem mass spectrometry (nano-LC MS/MS) experiments allowed to correlate PDAC with an altered enrichment of Apolipoprotein A-I, Apolipoprotein D, Complement factor D, Alpha-1-antichymotrypsin and Alpha-1-antitrypsin in the personalized protein corona. Moreover, other significant changes in the protein corona of PDAC patients were found. Overall, the developed multiplexed strategy is a valid tool for PDAC detection and paves the way for the identification of new potential PDAC biomarkers.

6.
Nanoscale Adv ; 4(18): 4009-4015, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36133348

RESUMO

In the last decade, graphene oxide (GO)-based nanomaterials have attracted much attention for their potential anti-cancer properties against various cancer cell types. However, while in vitro studies are promising, following in vivo investigations fail to show any relevant efficacy. Recent research has clarified that the wide gap between benchtop discoveries and clinical practice is due to our limited knowledge about the physical-chemical transformation of nanomaterials in vivo. In physiological environments, nanomaterials are quickly coated by a complex dress of biological molecules referred to as the protein corona. Mediating the interaction between the pristine material and the biological system the protein corona controls the mechanisms of action of nanomaterials up to the sub-cellular level. Here we investigate the anticancer ability of GO in SK-BR-3 human breast cancer cells over-expressing the human epidermal growth factor receptor 2 (HER-2), which is functionally implicated in the cell growth and proliferation through the activation of downstream pathways, including the PI3K/AKT/mTOR and MAPK/ERK signaling cascades. Western blot analysis demonstrated that GO treatment resulted in a marked decrease in total HER-2, associated with a down-regulation of the expression and activation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) thus indicating that GO may act as a potent HER-2 inhibitor. On the other side, the protein corona reverted the effects of GO on HER-2 expression and molecular downstream events to the control level. Our findings may suggest a mechanistic explanation of the reduced anticancer properties of GO-based nanomaterials in vivo. These results may also represent a good prediction strategy for the anticancer activity of nanomaterials designed for biomedical purposes, reaffirming the necessity of exploring their effectiveness under physiologically relevant conditions before moving on to the next in vivo studies.

7.
Pharmaceutics ; 14(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015328

RESUMO

DNA vaccination has been extensively studied as a promising strategy for tumor treatment. Despite the efforts, the therapeutic efficacy of DNA vaccines has been limited by their intrinsic poor cellular internalization. Electroporation, which is based on the application of a controlled electric field to enhance DNA penetration into cells, has been the method of choice to produce acceptable levels of gene transfer in vivo. However, this method may cause cell damage or rupture, non-specific targeting, and even degradation of pDNA. Skin irritation, muscle contractions, pain, alterations in skin structure, and irreversible cell damage have been frequently reported. To overcome these limitations, in this work, we use a microfluidic platform to generate DNA-loaded lipid nanoparticles (LNPs) which are then characterized by a combination of dynamic light scattering (DLS), synchrotron small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). Despite the clinical successes obtained by LNPs for mRNA and siRNA delivery, little is known about LNPs encapsulating bulkier DNA molecules, the clinical application of which remains challenging. For in vitro screening, LNPs were administered to human embryonic kidney 293 (HEK-293) and Chinese hamster ovary (CHO) cell lines and ranked for their transfection efficiency (TE) and cytotoxicity. The LNP formulation exhibiting the highest TE and the lowest cytotoxicity was then tested for the delivery of the DNA vaccine pVAX-hECTM targeting the human neoantigen HER2, an oncoprotein overexpressed in several cancer types. Using fluorescence-activated cell sorting (FACS), immunofluorescence assays and fluorescence confocal microscopy (FCS), we proved that pVAX-hECTM-loaded LNPs produce massive expression of the HER2 antigen on the cell membrane of HEK-293 cells. Our results provide new insights into the structure-activity relationship of DNA-loaded LNPs and pave the way for the access of this gene delivery technology to preclinical studies.

8.
Nanoscale ; 14(29): 10531-10539, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35833584

RESUMO

New technologies with the capacity to tune immune system activity are highly desired in clinical practice and disease management. Here we demonstrate that nanoparticles with a protein corona enriched with gelsolin (GSN), an abundant plasma protein that acts as a modulator of immune responses, are avidly captured by human monocytic THP-1 cells in vitro and by leukocyte subpopulations derived from healthy donors ex vivo. In human monocytes, GSN modulates the production of tumor necrosis factor alpha (TNF-α) in an inverse dose-dependent manner. Overall, our results suggest that artificial coronas can be exploited to finely tune the immune response, opening new approaches for the prevention and treatment of diseases.


Assuntos
Coroa de Proteína , Humanos , Imunidade , Imunomodulação , Monócitos/metabolismo , Coroa de Proteína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35564106

RESUMO

Unprecedented opportunities for early stage cancer detection have recently emerged from the characterization of the personalized protein corona (PC), i.e., the protein cloud that surrounds nanoparticles (NPs) upon exposure to a patients' bodily fluids. Most of these methods require "direct characterization" of the PC., i.e., they necessitate protein isolation, identification, and quantification. Each of these steps can introduce bias and affect reproducibility and inter-laboratory consistency of experimental data. To fulfill this gap, here we develop a nanoparticle-enabled blood (NEB) test based on the indirect characterization of the personalized PC by magnetic levitation (MagLev). The MagLev NEB test works by analyzing the levitation profiles of PC-coated graphene oxide (GO) NPs that migrate along a magnetic field gradient in a paramagnetic medium. For the test validation, we employed human plasma samples from 15 healthy individuals and 30 oncological patients affected by four cancer types, namely breast cancer, prostate cancer, colorectal cancer, and pancreatic ductal adenocarcinoma (PDAC). Over the last 15 years prostate cancer, colorectal cancer, and PDAC have continuously been the second, third, and fourth leading sites of cancer-related deaths in men, while breast cancer, colorectal cancer, and PDAC are the second, third and fourth leading sites for women. This proof-of-concept investigation shows that the sensitivity and specificity of the MagLev NEB test depend on the cancer type, with the global classification accuracy ranging from 70% for prostate cancer to an impressive 93.3% for PDAC. We also discuss how this tool could benefit from several tunable parameters (e.g., the intensity of magnetic field gradient, NP type, exposure conditions, etc.) that can be modulated to optimize the detection of different cancer types with high sensitivity and specificity.

10.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680304

RESUMO

Pancreatic Ductal Adeno Carcinoma (PDAC) is one of the most lethal malignancies worldwide, and the development of sensitive and specific technologies for its early diagnosis is vital to reduce morbidity and mortality rates. In this proof-of-concept study, we demonstrate the diagnostic ability of magnetic levitation (MagLev) to detect PDAC by using levitation of graphene oxide (GO) nanoparticles (NPs) decorated by a biomolecular corona of human plasma proteins collected from PDAC and non-oncological patients (NOP). Levitation profiles of corona-coated GO NPs injected in a MagLev device filled with a paramagnetic solution of dysprosium(III) nitrate hydrate in water enables to distinguish PDAC patients from NOP with 80% specificity, 100% sensitivity, and global classification accuracy of 90%. Our findings indicate that Maglev could be a robust and instrumental tool for the early detection of PDAC and other cancers.

11.
Pharmaceutics ; 13(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34452253

RESUMO

In recent years, lipid nanoparticles (LNPs) have gained considerable attention in numerous research fields ranging from gene therapy to cancer immunotherapy and DNA vaccination. While some RNA-encapsulating LNP formulations passed clinical trials, DNA-loaded LNPs have been only marginally explored so far. To fulfil this gap, herein we investigated the effect of several factors influencing the microfluidic formulation and transfection behavior of DNA-loaded LNPs such as PEGylation, total flow rate (TFR), concentration and particle density at the cell surface. We show that PEGylation and post-synthesis sample concentration facilitated formulation of homogeneous and small size LNPs with high transfection efficiency and minor, if any, cytotoxicity on human Embryonic Kidney293 (HEK-293), spontaneously immortalized human keratinocytes (HaCaT), immortalized keratinocytes (N/TERT) generated from the transduction of human primary keratinocytes, and epidermoid cervical cancer (CaSki) cell lines. On the other side, increasing TFR had a detrimental effect both on the physicochemical properties and transfection properties of LNPs. Lastly, the effect of particle concentration at the cell surface on the transfection efficiency (TE) and cell viability was largely dependent on the cell line, suggesting that its case-by-case optimization would be necessary. Overall, we demonstrate that fine tuning formulation and microfluidic parameters is a vital step for the generation of highly efficient DNA-loaded LNPs.

12.
Biomater Sci ; 9(13): 4671-4678, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018505

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive form of gliomas. The development of supplementary approaches for glioblastoma diagnosis, limited to imaging techniques and tissue biopsies so far, is a necessity of clinical relevance. In this context, nanotechnology might afford tools to enable early diagnosis. Upon exposure to biological media, nanoparticles are coated with a layer of proteins, the protein corona (PC), whose composition is individual and personalized. Here we show that the PC of graphene oxide nanosheets has a capacity to detect GBM using a simple one-dimensional gel electrophoresis technique. In a range of molecular weights between 100 and 120 kDa, the personalized PC from GBM patients is completely discernible from that of healthy donors and that of cancer patients affected by pancreatic adenocarcinoma and colorectal cancer. Using tandem mass spectrometry, we found that inter-alpha-trypsin inhibitor (ITI) heavy chain H4 is enriched in the PC of all tested individuals but not in the GBM patients. Overall, if confirmed on a larger cohort series, this approach could be advantageous at the first level of investigation to decide whether to carry out more invasive analyses and/or to follow up patients after surgery and/or pharmacological treatment.


Assuntos
Adenocarcinoma , Glioblastoma , Neoplasias Pancreáticas , Coroa de Proteína , Eletroforese , Glioblastoma/diagnóstico , Grafite , Humanos
13.
Pharmaceutics ; 13(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809262

RESUMO

Nanoparticles (NPs) have emerged as an effective means to deliver anticancer drugs into the brain. Among various forms of NPs, liposomal temozolomide (TMZ) is the drug-of-choice for the treatment and management of brain tumours, but its therapeutic benefit is suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumour penetration of liposomal TMZ can be a vital obstacle. Recently, the protein corona, i.e., the layer of plasma proteins that surround NPs after exposure to human plasma, has emerged as an endogenous trigger that mostly controls their anticancer efficacy. Exposition of particular biomolecules from the corona referred to as protein corona fingerprints (PCFs) may facilitate interactions with specific receptors of target cells, thus, promoting efficient internalization. In this work, we have synthesized a set of four TMZ-encapsulating nanomedicines made of four cationic liposome (CL) formulations with systematic changes in lipid composition and physical-chemical properties. We have demonstrated that precoating liposomal TMZ with a protein corona made of human plasma proteins can increase drug penetration in a 3D brain cancer model derived from U87 human glioblastoma multiforme cell line leading to marked inhibition of tumour growth. On the other side, by fine-tuning corona composition we have also provided experimental evidence of a non-unique effect of the corona on the tumour growth for all the complexes investigated, thus, clarifying that certain PCFs (i.e., APO-B and APO-E) enable favoured interactions with specific receptors of brain cancer cells. Reported results open new perspectives into the development of corona-coated liposomal drugs with enhanced tumour penetration and antitumour efficacy.

14.
Biointerphases ; 16(1): 011010, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33706529

RESUMO

Characterization of the personalized protein corona (PC) that forms around nanomaterials upon exposure to human plasma is emerging as powerful technology for early cancer detection. However, low material stability and interbatch variability have limited its clinical application so far. Here, we present a nanoparticle-enabled blood (NEB) test that uses 120 nm gold nanoparticles (NPs) as the accumulator of blood plasma proteins. In the test, the personalized PC of gold NPs is characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. As a paradigmatic case study, pancreatic ductal adenocarcinoma (PDAC) was chosen due to the lack of effective detection strategies that lead to poor survival rate after diagnosis (<1 year) and extremely low 5-years survival rate (15-20%). Densitometric analysis of 75 protein patterns (28 from healthy subjects and 47 from PDAC patients) allowed us to distinguish nononcological and PDAC patients with good sensitivity (78.6%) and specificity (85.3%). The gold NEB test is completely aligned to affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end users criteria stated by the World Health Organization for cancer screening and detection. Thus, it could be very useful in clinical practice at the first level of investigation to decide whether to carry out more invasive analyses or not.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Neoplasias Pancreáticas/diagnóstico , Coroa de Proteína/química , Proteínas Sanguíneas/química , Humanos , Análise Multivariada
15.
Nanoscale ; 12(32): 16697-16704, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32776050

RESUMO

Following exposure to human plasma (HP), nanoparticles (NPs) are coated with a biomolecular layer referred to as a protein corona. We recently revealed that characterizing the protein coronas of various NPs may provide a unique opportunity for cancer identification and discrimination. In other words, protein corona profiles of several NPs, when being analyzed using classifiers, would provide a unique "fingerprint" for each type of disease. Here, we probed the capacity of the protein corona for the identification and discrimination of breast and prostate cancer patients from healthy individuals. Using three lipid NP formulations with distinct physical-chemical properties as a cross-reactive sensor array and a supervised random forest classifier, we identified a set of proteins that showed a significant difference in cancer patients and control subjects. Our data show that many of the corona proteins with the highest discrimination ability between oncological patients and healthy individuals are related to cellular and molecular aspects of breast and prostate cancers.


Assuntos
Nanopartículas , Neoplasias da Próstata , Coroa de Proteína , Composição de Medicamentos , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Proteínas
16.
Artigo em Inglês | MEDLINE | ID: mdl-32523944

RESUMO

The protein corona (PC) that forms around nanomaterials upon exposure to human biofluids (e.g., serum, plasma, cerebral spinal fluid etc.) is personalized, i.e., it depends on alterations of the human proteome as those occurring in several cancer types. This may relevant for early cancer detection when changes in concentration of typical biomarkers are often too low to be detected by blood tests. Among nanomaterials under development for in vitro diagnostic (IVD) testing, Graphene Oxide (GO) is regarded as one of the most promising ones due to its intrinsic properties and peculiar behavior in biological environments. While recent studies have explored the binding of single proteins to GO nanoflakes, unexplored variables (e.g., GO lateral size and protein concentration) leading to formation of GO-PC in human plasma (HP) have only marginally addressed so far. In this work, we studied the PC that forms around GO nanoflakes of different lateral sizes (100, 300, and 750 nm) upon exposure to HP at several dilution factors which extend over three orders of magnitude from 1 (i.e., undiluted HP) to 103. HP was collected from 20 subjects, half of them being healthy donors and half of them diagnosed with pancreatic ductal adenocarcinoma (PDAC) a lethal malignancy with poor prognosis and very low 5-year survival rate after diagnosis. By dynamic light scattering (DLS), electrophoretic light scattering (ELS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nano liquid chromatography tandem mass spectrometry (nano-LC MS/MS) experiments we show that the lateral size of GO has a minor impact, if any, on PC composition. On the other side, protein concentration strongly affects PC of GO nanoflakes. In particular, we were able to set dilution factor of HP in a way that maximizes the personalization of PC, i.e., the alteration in the protein profile of GO nanoflakes between cancer vs. non-cancer patients. We believe that this study shall contribute to a deeper understanding of the interactions among GO and HP, thus paving the way for the development of IVD tools to be used at every step of the patient pathway, from prognosis, screening, diagnosis to monitoring the progression of disease.

17.
Cancers (Basel) ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396882

RESUMO

Simultaneous detection of multiple analytes from a single biological sample is gaining more attention in the development of more reliable and point-of-care diagnostic devices. We developed a multiplexed strategy that combined outcomes of clinical biomarkers with analysis of the protein corona that forms around graphene oxide sheets upon exposure to patient's plasma. As a paradigmatic case study, we selected pancreatic ductal adenocarcinoma (PDAC), mainly because of the absence of effective detection strategies that resulted in an extremely low five-year survival rate after diagnosis (<10%). Association of protein corona analysis and haemoglobin levels discriminated PDAC patients from healthy volunteers in up to 90% of cases. If further confirmed in larger-cohort studies, this approach may be used in the detection of PDAC.

18.
Nanoscale ; 11(32): 15339-15346, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31386742

RESUMO

Advances in nanotechnology are introducing the exciting possibility of cancer identification at early stages via analysis of the personalized biomolecular corona (BC), i.e. the dynamic "halo" of proteins that adsorbs onto NPs following exposure to patients' plasma. In this study, we develop a blood test for early cancer detection based on the characterization of the BC that forms around Graphene Oxide (GO) nanoflakes. Among its elective properties, GO binds low amounts of albumin, the most abundant protein in the blood and one of the most enriched proteins in the BC of many nanomaterials. This unique property of GO allows strong adsorption of poorly concentrated plasma proteins without abundant protein depletion. In our study, GO nanometric flakes have been used to analyze BCs from 50 subjects, half of them diagnosed with pancreatic cancer and half of them being healthy volunteers. Pancreatic cancer was chosen as the model of a high mortality disease with poor survival rates due to its delayed diagnosis. The receiver operating characteristic (ROC) curve analysis was applied to measure the diagnostic accuracy of the BC-based test. We obtained an area under the curve (AUC) of 0.96 and the test discriminated cancer patients from healthy subjects with a sensitivity of 92%. Finally, a double-blind validation was made using a second test dataset (10 healthy subjects + 10 pancreatic cancer patients) and it confirmed the results obtained on the first training dataset. Being highly accurate, fast, inexpensive and easy to perform, we believe that the BC-enabled blood test has the potential to become a turning point in early detection of cancer and other diseases.


Assuntos
Detecção Precoce de Câncer/métodos , Grafite/química , Nanoestruturas/química , Neoplasias Pancreáticas/diagnóstico , Coroa de Proteína/análise , Área Sob a Curva , Biomarcadores Tumorais/sangue , Antígeno CA-19-9/sangue , Estudos de Casos e Controles , Método Duplo-Cego , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias Pancreáticas/patologia , Curva ROC , Sensibilidade e Especificidade
19.
Nanoscale ; 11(6): 2733-2741, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30672541

RESUMO

Graphene oxide (GO) is a single-atomic-layered material made of a sheet of oxidized carbon atoms arranged in a honeycomb structure. Thanks to the notable physical and chemical properties of GO, GO-based nanomaterials have applications in many fields of research, including gene delivery. It has been reported that pristine GO can absorb single-stranded DNA and RNA through π-π stacking, which cannot be used as a gene carrier because it is hard to load double-stranded DNA (dsDNA). To tackle this issue, this work was aimed at developing a hybrid nanoparticle (NP) system made of GO coated with cationic lipids (hereafter referred to as GOCL) with suitable physical-chemical properties for gene delivery applications. To this end, nanosized GO flakes (nGO) were coated with the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) by microfluidic mixing. Comprehensive characterization of GOCL NPs was performed by a combination of dynamic light scattering (DLS), micro-electrophoresis and atom force microscopy (AFM). Our results show that GOCL NPs exhibit adequate size (<150 nm) and surface charge (ξ = +15 mV) for gene delivery purposes. Complexes made of GOCL NPs and plasmid DNA (pDNA) were used to transfect human cervical cancer cells (HeLa) and human embryonic kidney (HEK-293) cells. Pristine nGO and DOTAP cationic liposomes were used as a reference. GOCL NPs exhibited a similar TE but a much higher cell viability compared with DOTAP cationic liposomes. Confocal fluorescence microscopy provided a reasonable explanation for the superior performance of GOCL/DNA complexes showing that they are much more numerous, regular in size and homogeneously distributed than DOTAP/DNA complexes, thus splitting their gene payload over the entire cell population. Because of the imperative demand for efficient and safe nanocarriers, this study will contribute to the development of novel surface-functionalized GO-based hybrid gene vectors.


Assuntos
Técnicas de Transferência de Genes/instrumentação , Grafite/química , Técnicas Analíticas Microfluídicas/métodos , Nanoestruturas/química , DNA/química , DNA/farmacocinética , Células HEK293 , Células HeLa , Humanos , Lipossomos/química , Nanotecnologia , Óxidos/química , Propriedades de Superfície
20.
Pharmaceutics ; 11(1)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650541

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of cancer-related mortality in the Western world and is envisaged to become the second cause by 2030. Although our knowledge about the molecular biology of PDAC is continuously increasing, this progress has not been translated into better patients' outcome. Liposomes have been used to circumvent concerns associated with the low efficiency of anticancer drugs such as severe side effects and damage of healthy tissues, but they have not resulted in improved efficacy as yet. Recently, the concept is emerging that the limited success of liposomal drugs in clinical practice is due to our poor knowledge of the nano⁻bio interactions experienced by liposomes in vivo. After systemic administration, lipid vesicles are covered by plasma proteins forming a biomolecular coating, referred to as the protein corona (PC). Recent studies have clarified that just a minor fraction of the hundreds of bound plasma proteins, referred to as "PC fingerprints" (PCFs), enhance liposome association with cancer cells, triggering efficient particle internalization. In this study, we synthesized a library of 10 liposomal formulations with systematic changes in lipid composition and exposed them to human plasma (HP). Size, zeta-potential, and corona composition of the resulting liposome⁻protein complexes were thoroughly characterized by dynamic light scattering (DLS), micro-electrophoresis, and nano-liquid chromatography tandem mass spectrometry (nano-LC MS/MS). According to the recent literature, enrichment in PCFs was used to predict the targeting ability of synthesized liposomal formulations. Here we show that the predicted targeting capability of liposome⁻protein complexes clearly correlate with cellular uptake in pancreatic adenocarcinoma (PANC-1) and insulinoma (INS-1) cells as quantified by flow-assisted cell sorting (FACS). Of note, cellular uptake of the liposomal formulation with the highest abundance of PCFs was much larger than that of Onivyde®, an Irinotecan liposomal drug approved by the Food and Drug Administration in 2015 for the treatment of metastatic PDAC. Given the urgent need of efficient nanocarriers for the treatment of PDAC, we envision that our results will pave the way for the development of more efficient PC-based targeted nanomaterials. Here we also show that some BCs are enriched with plasma proteins that are associated with the onset and progression of PDAC (e.g., sex hormone-binding globulin, Ficolin-3, plasma protease C1 inhibitor, etc.). This could open the intriguing possibility to identify novel biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA