Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Orphanet J Rare Dis ; 18(1): 59, 2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36935482

RESUMO

BACKGROUND: Terminal 6q deletions are rare, and the number of well-defined published cases is limited. Since parents of children with these aberrations often search the internet and unite via international social media platforms, these dedicated platforms may hold valuable knowledge about additional cases. The Chromosome 6 Project is a collaboration between researchers and clinicians at the University Medical Center Groningen and members of a Chromosome 6 support group on Facebook. The aim of the project is to improve the surveillance of patients with chromosome 6 aberrations and the support for their families by increasing the available information about these rare aberrations. This parent-driven research project makes use of information collected directly from parents via a multilingual online questionnaire. Here, we report our findings on 93 individuals with terminal 6q deletions and 11 individuals with interstitial 6q26q27 deletions, a cohort that includes 38 newly identified individuals. RESULTS: Using this cohort, we can identify a common terminal 6q deletion phenotype that includes microcephaly, dysplastic outer ears, hypertelorism, vision problems, abnormal eye movements, dental abnormalities, feeding problems, recurrent infections, respiratory problems, spinal cord abnormalities, abnormal vertebrae, scoliosis, joint hypermobility, brain abnormalities (ventriculomegaly/hydrocephaly, corpus callosum abnormality and cortical dysplasia), seizures, hypotonia, ataxia, torticollis, balance problems, developmental delay, sleeping problems and hyperactivity. Other frequently reported clinical characteristics are congenital heart defects, kidney problems, abnormalities of the female genitalia, spina bifida, anal abnormalities, positional foot deformities, hypertonia and self-harming behaviour. The phenotypes were comparable up to a deletion size of 7.1 Mb, and most features could be attributed to the terminally located gene DLL1. Larger deletions that include QKI (> 7.1 Mb) lead to a more severe phenotype that includes additional clinical characteristics. CONCLUSIONS: Terminal 6q deletions cause a common but highly variable phenotype. Most clinical characteristics can be linked to the smallest terminal 6q deletions that include the gene DLL1 (> 500 kb). Based on our findings, we provide recommendations for clinical follow-up and surveillance of individuals with terminal 6q deletions.


Assuntos
Anormalidades Múltiplas , Malformações do Sistema Nervoso , Mídias Sociais , Feminino , Humanos , Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 6 , Malformações do Sistema Nervoso/genética , Fenótipo , Convulsões/genética
2.
Mol Cytogenet ; 7(1): 3, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24401281

RESUMO

BACKGROUND: Characteristic genomic abnormalities in patients with B cell chronic lymphocytic leukemia (CLL) have been shown to provide important prognostic information. Fluorescence in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA), currently used in clinical diagnostics of CLL, are targeted tests aimed at specific genomic loci. Microarray-based genomic profiling is a new high-resolution tool that enables genome-wide analyses. The aim of this study was to compare two recently launched genomic microarray platforms, i.e., the CytoScan HD Array (Affymetrix) and the HumanOmniExpress Array (Illumina), with FISH and MLPA to ascertain whether these latter tests can be replaced by either one of the microarray platforms in a clinical diagnostic setting. RESULT: Microarray-based genomic profiling and FISH were performed in all 28 CLL patients. For an unbiased comparison of the performance of both microarray platforms 9 patients were evaluated on both platforms, resulting in the identification of exactly identical genomic aberrations. To evaluate the detection limit of the microarray platforms we included 7 patients in which the genomic abnormalities were present in a relatively low percentage of the cells (range 5-28%) as previously determined by FISH. We found that both microarray platforms allowed the detection of copy number abnormalities present in as few as 16% of the cells. In addition, we found that microarray-based genomic profiling allowed the identification of genomic abnormalities that could not be detected by FISH and/or MLPA, including a focal TP53 loss and copy neutral losses of heterozygosity of chromosome 17p. CONCLUSION: From our results we conclude that although the microarray platforms exhibit a somewhat lower limit of detection compared to FISH, they still allow the detection of copy number abnormalities present in as few as 16% of the cells. By applying similar interpretation criteria, the results obtained from both platforms were comparable. In addition, we conclude that both microarray platforms allow the identification of additional potential prognostic relevant abnormalities such as focal TP53 deletions and copy neutral losses of heterozygosity of chromosome 17p, which would have remained undetected by FISH or MLPA. The prognostic relevance of these novel genomic alterations requires further evaluation in prospective clinical trials.

3.
Am J Hum Genet ; 91(2): 252-64, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22840365

RESUMO

We previously reported on nonrecurrent overlapping duplications at Xp11.22 in individuals with nonsyndromic intellectual disability (ID) harboring HSD17B10, HUWE1, and the microRNAs miR-98 and let-7f-2 in the smallest region of overlap. Here, we describe six additional individuals with nonsyndromic ID and overlapping microduplications that segregate in the families. High-resolution mapping of the 12 copy-number gains reduced the minimal duplicated region to the HUWE1 locus only. Consequently, increased mRNA levels were detected for HUWE1, but not HSD17B10. Marker and SNP analysis, together with identification of two de novo events, suggested a paternally derived intrachromosomal duplication event. In four independent families, we report on a polymorphic 70 kb recurrent copy-number gain, which harbors part of HUWE1 (exon 28 to 3' untranslated region), including miR-98 and let-7f-2. Our findings thus demonstrate that HUWE1 is the only remaining dosage-sensitive gene associated with the ID phenotype. Junction and in silico analysis of breakpoint regions demonstrated simple microhomology-mediated rearrangements suggestive of replication-based duplication events. Intriguingly, in a single family, the duplication was generated through nonallelic homologous recombination (NAHR) with the use of HUWE1-flanking imperfect low-copy repeats, which drive this infrequent NAHR event. The recurrent partial HUWE1 copy-number gain was also generated through NAHR, but here, the homologous sequences used were identified as TcMAR-Tigger DNA elements, a template that has not yet been reported for NAHR. In summary, we showed that an increased dosage of HUWE1 causes nonsyndromic ID and demonstrated that the Xp11.22 region is prone to recombination- and replication-based rearrangements.


Assuntos
Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA/genética , Rearranjo Gênico/genética , Deficiência Intelectual/genética , Ubiquitina-Proteína Ligases/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Hibridização Genômica Comparativa , Biologia Computacional , Replicação do DNA/genética , Duplicação Gênica/genética , Humanos , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética , Proteínas Supressoras de Tumor
4.
Eur J Med Genet ; 53(5): 344-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20553986

RESUMO

Polymicrogyria (PMG) is a brain malformation due to abnormal cortical organisation. It is a heterogeneous disorder associated with 22q11.2 deletion syndrome (also known as velocardiofacial (VCF) syndrome) amongst others. Since this association was first recognised in 1996, over 30 patients with PMG and 22q11.2 deletion have been described. In 22q11.2 deletion syndrome, PMG is mainly located in the perisylvian areas; it frequently has an asymmetrical presentation with a striking predisposition for the right hemisphere. Neurological features of perisylvian PMG include developmental delay/mental retardation, seizures, microcephaly, spasticity and oromotor dysfunction. Thus in children diagnosed with 22q11.2 deletion syndrome, a finding of PMG has important prognostic value. We present a seven-month old boy with microcephaly, short stature and developmental delay. A cerebral MRI showed slightly enlarged ventricles and symmetrical perisylvian polymicrogyria. A 22q11.2 deletion was revealed by array-based comparative genomic hybridization. Remarkably the boy had no other manifestations of VCF syndrome. Paediatricians, child neurologists and clinical geneticists should be aware that the presence of PMG (especially in the perisylvian areas) needs investigating for 22q11.2 deletion, even if other more common VCF syndrome features are absent.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 22 , Malformações do Desenvolvimento Cortical/genética , Córtex Cerebral/anormalidades , Deficiências do Desenvolvimento/genética , Síndrome de DiGeorge/genética , Humanos , Lactente , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Masculino , Microcefalia/genética
5.
Genes Chromosomes Cancer ; 48(8): 737-44, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19455606

RESUMO

It was shown that Lynch syndrome can be caused by germline hypermethylation of the MLH1 and MSH2 promoters. Furthermore, it has been demonstrated very recently that germline deletions of the 3' region of EPCAM cause transcriptional read-through which results in silencing of MSH2 by hypermethylation. We wanted to determine the prevalence of germline MLH1 promoter hypermethylation and of germline and somatic MSH2 promoter hypermethylation in a large group of Lynch syndrome-suspected patients. From a group of 331 Lynch Syndrome-suspected patients we selected cases, who had no germline MLH1, MSH2, or MSH6 mutation and whose tumors showed loss of MLH1 or MSH2, or, if staining was unavailable, had a tumor with microsatellite instability. Methylation assays were performed to test these patients for germline MLH1 and/or MSH2 promoter hypermethylation. Two patients with germline MLH1 promoter hypermethylation and no patients with germline MSH2 promoter hypermethylation were identified. In the subgroup screened for germline MSH2 promoter hypermethylation, we identified 3 patients with somatic MSH2 promoter hypermethylation in their tumors, which was caused by a germline EPCAM deletion. In the group of 331 Lynch Syndrome-suspected patients, the frequencies of germline MLH1 promoter hypermethylation and somatic MSH2 promoter hypermethylation caused by germline EPCAM deletions are 0.6 and 0.9%, respectively. These mutations, therefore, seem to be rather infrequent. However, the contribution of germline MLH1 hypermethylation and EPCAM deletions to the genetically proven Lynch syndrome cases in this cohort is very high. Previously 27 pathogenic mutations were identified; the newly identified mutations now represent 16% of all mutations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Antígenos de Neoplasias/genética , Moléculas de Adesão Celular/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Metilação de DNA/genética , Mutação em Linhagem Germinativa , Proteínas Nucleares/genética , Estudos de Coortes , Proteínas de Ligação a DNA , Molécula de Adesão da Célula Epitelial , Feminino , Deleção de Genes , Humanos , Imuno-Histoquímica , Masculino , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS/genética , Mutação , Regiões Promotoras Genéticas
6.
Eur J Med Genet ; 52(2-3): 116-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19452620

RESUMO

We report on a male patient with intra-uterine growth retardation, microcephaly, coloboma, laryngomalacia and developmental delay. Array CGH analysis revealed a 649 kb duplication on chromosome 1p34.1. Only five patients with overlapping duplications have been reported thus far. Ten known genes are located in the duplicated region, including the POMGNT1 gene encoding for O-mannose beta-1,2-N-acetylglucosaminyltransferase. This gene, mutated in muscle-eye-brain disease, might be causative for the observed phenotype in our patient.


Assuntos
Transtornos Cromossômicos/genética , Cromossomos Humanos Par 1 , N-Acetilglucosaminiltransferases/genética , Coloboma/genética , Humanos , Lactente , Laringomalácia/genética , Microcefalia/genética , Fenótipo
7.
Genes Chromosomes Cancer ; 43(2): 194-201, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15729700

RESUMO

Chromosomal instability in colon tumors implies the presence of numerical and structural chromosome aberrations and is further characterized by the absence of microsatellite instability and the occurrence of KRAS and/or TP53 mutations. In a previous screening of 194 colon tumors for both microsatellite instability and TP53 mutation, we found 25 microsatellite-unstable tumors, in 9 (36%) of which, presumed to be chromosomally stable, there were TP53 mutations. This prompted us to investigate whether a TP53 mutation in these microsatellite-unstable tumors would be an indicator of chromosomal instability, that is, whether this would be a category of tumors showing both microsatellite and chromosomal instability. For chromosomal instability assessment, we performed array-comparative genomic hybridization analysis of tumor and control DNA extracted from formalin-fixed, paraffin-embedded stage III colon tumor specimens. The array consisted of 435 subtelomere-specific BACs. We compared all but one (whose DNA was of bad quality) of the microsatellite-unstable TP53 mutation-containing tumors (8) with a similarly sized group of microsatellite-unstable tumors without TP53 mutation (11). Microsatellite-unstable tumors with a TP53 mutation showed on average 0.9 aberrations (range 0-3) when assessed with this array system. Those without a TP53 mutation showed on average 0.7 aberrations (range 0-2). Thus, microsatellite-unstable tumors showed few chromosomal abnormalities regardless of TP53 mutation status. Because, in our study, the microsatellite-stable tumors had on average 3.4chromosomal abnormalities (range 0-7), a clear difference exists between microsatellite-unstable and -stable tumors. Because a substantial proportion of microsatellite-unstable colon tumors carry a TP53 mutation while showing relativelyfewchromosomal aberrations, a TP53 mutation in these tumors cannot be considered to be an indicator of chromosomal instability.


Assuntos
Neoplasias do Colo/genética , Genes p53 , Repetições de Microssatélites/genética , Mutação , Cromossomos Artificiais Bacterianos , Humanos
8.
Br J Haematol ; 126(4): 495-500, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15287941

RESUMO

The detection of chromosomal aberrations is essential for the diagnosis and therapy of acute myeloid leukaemia (AML). We report two cases of de novo AML with translocations involving the breakpoint 6p22 first detected at relapse. Chromosomes were identified by conventional and molecular cytogenetics. At diagnosis, one patient presented a normal karyotype and the other one a trisomy 11 and a del(7)(q31q36). In the first case, cytogenetic analyses at relapse revealed a t(3;6)(q21;p22). The second patient showed a t(1;6)(q21;p22) at relapse. Detailed characterization of the breakpoints on the short arm of chromosome 6 was performed using array comparative genomic hybridization (CGH) on a platform specific for chromosome 6. In both cases, array CGH showed a terminal deletion and a small internal duplication of the short arm of chromosome 6. The region 6p22 is involved in several aberrations in tumours. Translocation partners are distributed throughout the human genome. We identified 3q21, a recurrent breakpoint in AML, for the first time as a translocation partner. The fragile site FRA6C, located in 6p22.2, and possibly the genes that reside within it, may play a role in tumorigenesis. The occurrence of translocations involving 6p22 after chemotherapy or radiation therapy suggests that one or more therapeutic agents might play a role in their origin.


Assuntos
Cromossomos Humanos Par 6/genética , Leucemia Mieloide Aguda/genética , Translocação Genética , Cromossomos Humanos Par 3/genética , Feminino , Humanos , Cariotipagem , Pessoa de Meia-Idade , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Recidiva
9.
Cancer Genet Cytogenet ; 136(2): 95-100, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12237231

RESUMO

We describe several relatives within one renal cell cancer (RCC) family sharing a constitutional t(2;3) (q35;q21). Based on molecular studies on several independent primary tumors in this family, a causative role for this translocation in tumor development was suggested. Subsequent positional cloning of the 3q21 chromosomal breakpoint revealed that this breakpoint disrupts a novel gene, DIRC2 (disrupted in renal cancer 2). This gene encodes an evolutionary conserved transmembrane protein and represents a novel member of the MFS superfamily of transporters. To evaluate whether DIRC2 is also targeted in sporadic RCC cases with cytogenetically defined 3q21 breakpoints, fluorescence in situ hybridization analysis was performed on metaphase spreads and/or interphase nuclei of 12 primary sporadic RCC using genomic clones from a 3q21 breakpoint-spanning contig as probes. Three breakpoints were mapped proximal to the familial breakpoint and nine breakpoints were mapped distal to this breakpoint. Two of the latter breakpoints were mapped in the contig within 1 Mb distance from the familial breakpoint. Because these clustered 3q21 breakpoints do not coincide with the familial 3q21 breakpoint, they most likely affect genes distinct from DIRC2.


Assuntos
Carcinoma de Células Renais/genética , Cromossomos Humanos Par 3 , Neoplasias Renais/genética , Translocação Genética , Humanos , Hibridização in Situ Fluorescente , Cariotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA