RESUMO
Resistance to immune checkpoint inhibitors (ICIs) is common, even in tumors with T cell infiltration. We thus investigated consequences of ICI-induced T cell infiltration in the microenvironment of resistant tumors. T cells and neutrophil numbers increased in ICI-resistant tumors following treatment, in contrast to ICI-responsive tumors. Resistant tumors were distinguished by high expression of IL-1 Receptor 1 (IL1R1), enabling a synergistic response to IL-1 and TNFα to induce G-CSF, CXCL1, and CXCL2 via NF-κB signaling, supporting immunosuppressive neutrophil accumulation in tumor. Perturbation of this inflammatory resistance circuit sensitized tumors to ICIs. Paradoxically, T cells drove this resistance circuit via TNFï¡ both in vitro and in vivo. Evidence of this inflammatory resistance circuit and its impact also translated to human cancers. These data support a mechanism of ICI resistance, wherein treatment-induced T cell activity can drive resistance in tumors responsive to IL-1 and TNFα, with important therapeutic implications.
RESUMO
Histopathology image evaluation is indispensable for cancer diagnoses and subtype classification. Standard artificial intelligence methods for histopathology image analyses have focused on optimizing specialized models for each diagnostic task1,2. Although such methods have achieved some success, they often have limited generalizability to images generated by different digitization protocols or samples collected from different populations3. Here, to address this challenge, we devised the Clinical Histopathology Imaging Evaluation Foundation (CHIEF) model, a general-purpose weakly supervised machine learning framework to extract pathology imaging features for systematic cancer evaluation. CHIEF leverages two complementary pretraining methods to extract diverse pathology representations: unsupervised pretraining for tile-level feature identification and weakly supervised pretraining for whole-slide pattern recognition. We developed CHIEF using 60,530 whole-slide images spanning 19 anatomical sites. Through pretraining on 44 terabytes of high-resolution pathology imaging datasets, CHIEF extracted microscopic representations useful for cancer cell detection, tumour origin identification, molecular profile characterization and prognostic prediction. We successfully validated CHIEF using 19,491 whole-slide images from 32 independent slide sets collected from 24 hospitals and cohorts internationally. Overall, CHIEF outperformed the state-of-the-art deep learning methods by up to 36.1%, showing its ability to address domain shifts observed in samples from diverse populations and processed by different slide preparation methods. CHIEF provides a generalizable foundation for efficient digital pathology evaluation for patients with cancer.
Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/patologia , Prognóstico , Aprendizado de Máquina Supervisionado , Feminino , Masculino , Patologia Clínica/métodosRESUMO
BACKGROUND: There are limited data regarding HER2-low expression dynamics between matched primary tumors and brain metastases (BrMs) in breast cancer. HER2-low expression has emerged as a new therapeutic biomarker for highly active antibody-drug conjugates with emerging intracranial activity. METHODS: Patients with metastatic breast cancer (MBC) and BrMs seen at an NCI-designated center between 2003-2023 were identified. HER2 expression was defined as HER2-positive (3+,2+/ISH amplified), HER2-low (1+,2+/ISH negative), or HER2-0 by ASCO-CAP guidelines. Estrogen receptor (ER) status was defined as ER≥1%. Multivariate survival analyses by Cox proportional hazard models were determined from time of BrM resection to death or last follow-up between the 3 subtypes, controlling for ER and age. RESULTS: Among 197 matched primary and resected BrMs, 81% exhibited HER2 expression in the brain:61% HER2-positive, 20% HER2-low, and 19% HER2-0. Concordance was high in HER2-positive primary tumors with 100% retaining HER2 expression (97% retained HER2+ expression and 2.7% switched to HER2-low). HER2-0 primaries frequently showed HER2 gain in BrMs to HER2-low (35%) or HER2-positive (5.4%) status. Among 48 HER2-low primary tumors, 52% were discordant for HER2 status in the brain with 21% testing HER2-positive and 31% testing HER2-0. In adjusted analyses, patients with HER2-positive BrMs had significantly lower death risk than patients with HER2-low BrMs (HR=0.41, P=0.0006); no difference was observed between HER2-0 and HER2-low. CONCLUSIONS: In this retrospective analysis, HER2 expression is common in breast cancer BrMs, emphasizing the need for improved, non-invasive diagnostics. Patients with HER2-low and HER2-0 BrMs face inferior survival, presenting an unmet clinical need.
RESUMO
Organoid cultures offer a powerful technology to investigate many different aspects of development, physiology, and pathology of diverse tissues. Unlike standard tissue culture of primary breast epithelial cells, breast organoids preserve the epithelial lineages and architecture of the normal tissue. However, existing organoid culture methods are tedious, difficult to scale, and do not robustly retain estrogen receptor (ER) expression and responsiveness in long-term culture. Here, we describe a modified culture method to generate and maintain organoids as suspension cultures in reconstituted basement membrane (™Matrigel). This method improves organoid growth and uniformity compared to the conventional Matrigel dome embedding method, while maintaining the fidelity of the three major epithelial lineages. Using this adopted method, we are able to culture and passage purified hormone sensing (HS) cells that retain ER responsiveness upon estrogen stimulation in long-term culture. This culture system presents a valuable platform to study the events involved in initiation and evolution of ER-positive breast cancer.
RESUMO
Cancer-associated mutations have been documented in normal tissues, but the prevalence and nature of somatic copy number alterations and their role in tumor initiation and evolution is not well understood. Here, using single cell DNA sequencing, we describe the landscape of CNAs in >42,000 breast epithelial cells from women with normal or high risk of developing breast cancer. Accumulation of individual cells with one or two of a specific subset of CNAs (e.g. 1q gain and 16q, 22q, 7q, and 10q loss) is detectable in almost all breast tissues and, in those from BRCA1 or BRCA2 mutations carriers, occurs prior to loss of heterozygosity (LOH) of the wildtype alleles. These CNAs, which are among the most common associated with ductal carcinoma in situ (DCIS) and malignant breast tumors, are enriched almost exclusively in luminal cells not basal myoepithelial cells. Allele-specific analysis of the enriched CNAs reveals that each allele was independently altered, demonstrating convergent evolution of these CNAs in an individual breast. Tissues from BRCA1 or BRCA2 mutation carriers contain a small percentage of cells with extreme aneuploidy, featuring loss of TP53 , LOH of BRCA1 or BRCA2 , and multiple breast cancer-associated CNAs in addition to one or more of the common CNAs in 1q, 10q or 16q. Notably, cells with intermediate levels of CNAs are not detected, arguing against a stepwise gradual accumulation of CNAs. Overall, our findings demonstrate that chromosomal alterations in normal breast epithelium partially mirror those of established cancer genomes and are chromosome- and cell lineage-specific.
RESUMO
Background: Inflammatory breast cancer (IBC) is a rare and poorly characterized type of breast cancer with an aggressive clinical presentation. The biological mechanisms driving the IBC phenotype are relatively undefined-partially due to a lack of comprehensive, large-scale genomic studies and limited clinical cohorts. Patients and Methods: A retrospective analysis of 2457 patients with metastatic breast cancer who underwent targeted tumor-only DNA-sequencing was performed at Dana-Farber Cancer Institute. Clinicopathologic, single nucleotide variant (SNV), copy number variant (CNV) and tumor mutational burden (TMB) comparisons were made between clinically confirmed IBC cases within a dedicated IBC center versus non-IBC cases. Results: Clinicopathologic differences between IBC and non-IBC cases were consistent with prior reports-including IBC being associated with younger age at diagnosis, higher grade, and enrichment with hormone receptor (HR)-negative and HER2-positive tumors. The most frequent somatic alterations in IBC involved TP53 (72%), ERBB2 (32%), PIK3CA (24%), CCND1 (12%), MYC (9%), FGFR1 (8%) and GATA3 (8%). A multivariate logistic regression analysis revealed a significant enrichment in TP53 SNVs in IBC; particularly in HER2-positive and HR-positive disease which was associated with worse outcomes. Tumor mutational burden (TMB) did not differ substantially between IBC and non-IBC cases and a pathway analysis revealed an enrichment in NOTCH pathway alterations in HER2-positive disease. Conclusion: Taken together, this study provides a comprehensive, clinically informed landscape of somatic alterations in a large cohort of patients with IBC. Our data support higher frequency of TP53 mutations and a potential enrichment in NOTCH pathway activation-but overall; a lack of major genomic differences. These results both reinforce the importance of TP53 alterations in IBC pathogenesis as well as their influence on clinical outcomes; but also suggest additional analyses beyond somatic DNA-level changes are warranted.
RESUMO
Emerging data suggests that HER2 intratumoral heterogeneity (ITH) is associated with therapy resistance, highlighting the need for new strategies to assess HER2 ITH. A promising approach is leveraging multiplexed tissue analysis techniques such as cyclic immunofluorescence (CyCIF), which enable visualization and quantification of 10-60 antigens at single-cell resolution from individual tissue sections. In this study, we qualified a breast cancer-specific antibody panel, including HER2, ER, and PR, for multiplexed tissue imaging. We then compared the performance of these antibodies against established clinical standards using pixel-, cell- and tissue-level analyses, utilizing 866 tissue cores (representing 294 patients). To ensure reliability, the CyCIF antibodies were qualified against HER2 immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) data from the same samples. Our findings demonstrate the successful qualification of a breast cancer antibody panel for CyCIF, showing high concordance with established clinical antibodies. Subsequently, we employed the qualified antibodies, along with antibodies for CD45, CD68, PD-L1, p53, Ki67, pRB, and AR, to characterize 567 HER2+ invasive breast cancer samples from 189 patients. Through single-cell analysis, we identified four distinct cell clusters within HER2+ breast cancer exhibiting heterogeneous HER2 expression. Furthermore, these clusters displayed variations in ER, PR, p53, AR, and PD-L1 expression. To quantify the extent of heterogeneity, we calculated heterogeneity scores based on the diversity among these clusters. Our analysis revealed expression patterns that are relevant to breast cancer biology, with correlations to HER2 ITH and potential relevance to clinical outcomes.
RESUMO
OBJECTIVES: A combination of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) is the current standard of care for HER2 evaluation in breast cancer. Here, we investigate the potential clinical utility of next-generation sequencing (NGS)-derived HER2/ERBB2 copy number (CN) data for predicting HER2 status as defined by American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guidelines. METHODS: In total, 294 locally recurrent and metastatic breast cancers previously tested by targeted hybrid capture-based NGS and by HER2 IHC/FISH were included. Analyses focused on the ERBB2 median log2 ratios and start-end genomic coordinates from NGS, average HER2 CN and HER2/CEP17 ratios from FISH, and the HER2 IHC scores. We also determined a more stringent log2 ratio cutoff to predict HER2-positive status with 100% specificity. RESULTS: Sixty-four (22%) cases were HER2 positive and 230 (78%) were HER2 negative by ASCO/CAP guidelines. The ERBB2 median log2 ratios from NGS strongly correlated with HER2 status by IHC/FISH (area under receiver operator characteristic curve = 0.951). ERBB2 log2 ratio more than 1.7 was 100% specific for HER2-positive results by IHC/FISH. Start and end genomic coordinates for regions of gain near ERBB2 by NGS also predicted HER2 status. CONCLUSIONS: Copy number data from our NGS panel strongly correlate with HER2 status. Using a stringent cutoff, ERBB2 log2 ratio accurately predicts HER2 positivity with high specificity. The NGS CN assessment may have utility in determining HER2 status in certain clinical settings.
Assuntos
Neoplasias da Mama , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Receptor ErbB-2 , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor ErbB-2/genética , Receptor ErbB-2/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imuno-Histoquímica , Dosagem de Genes , Biomarcadores Tumorais/genética , Pessoa de Meia-IdadeRESUMO
Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismoRESUMO
The molecular underpinnings of HER2-low and HER2-0 (IHC 0) breast tumors remain poorly defined. Using genomic findings from 1039 patients with HER2-negative metastatic breast cancer undergoing next-generation sequencing from 7/2013-12/2020, we compare results between HER2-low (n = 487, 47%) and HER2-0 tumors (n = 552, 53%). A significantly higher number of ERBB2 alleles (median copy count: 2.05) are observed among HER2-low tumors compared to HER2-0 (median copy count: 1.79; P = 2.36e-6), with HER2-0 tumors harboring a higher rate of ERBB2 hemideletions (31.1% vs. 14.5%). No other genomic alteration reaches significance after accounting for multiple hypothesis testing, and no significant differences in tumor mutational burden are observed between HER2-low and HER2-0 tumors (median: 7.26 mutations/megabase vs. 7.60 mutations/megabase, p = 0.24). Here, we show that the genomic landscape of HER2-low and HER2-0 tumors does not differ significantly, apart from a higher ERBB2 copy count among HER2-low tumors, and a higher rate of ERBB2 hemideletions in HER2-0 tumors.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor ErbB-2/genética , Biomarcadores Tumorais/genética , Genômica/métodosRESUMO
Immune escape is a prerequisite for tumor growth. We previously described a decline in intratumor activated cytotoxic T cells and T cell receptor (TCR) clonotype diversity in invasive breast carcinomas compared to ductal carcinoma in situ (DCIS), implying a central role of decreasing T cell responses in tumor progression. To determine potential associations between peripheral immunity and breast tumor progression, here, we assessed the peripheral blood TCR clonotype of 485 breast cancer patients diagnosed with either DCIS or de novo stage IV disease at younger (<45) or older (≥45) age. TCR clonotype diversity was significantly lower in older compared to younger breast cancer patients regardless of tumor stage at diagnosis. In the younger age group, TCR-α clonotype diversity was lower in patients diagnosed with de novo stage IV breast cancer compared to those diagnosed with DCIS. In the older age group, DCIS patients with higher TCR-α clonotype diversity were more likely to have a recurrence compared to those with lower diversity. Whole blood transcriptome profiles were distinct depending on the TCR-α Chao1 diversity score. There were more CD8+ T cells and a more active immune environment in DCIS tumors of young patients with higher peripheral blood TCR-α Chao1 diversity than in those with lower diversity. These results provide insights into the role that host immunity plays in breast cancer development across different age groups.
Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Idoso , Feminino , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Linfócitos T CD8-Positivos/patologia , Biomarcadores Tumorais/genética , Receptores de Antígenos de Linfócitos T/genética , Processos Neoplásicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Carcinoma Ductal de Mama/patologiaRESUMO
PURPOSE: Young women treated for breast cancer with cytotoxic therapies are at risk for clonal hematopoiesis of indeterminate potential (CHIP), a condition in which blood cells carrying a somatic mutation associated with hematologic malignancy comprise at least 4% of the total blood system. CHIP has primarily been studied in older patient cohorts with limited clinical phenotyping. EXPERIMENTAL DESIGN: We performed targeted sequencing on longitudinal blood samples to characterize the clonal hematopoietic landscape of 878 women treated for breast cancer enrolled in the prospective Young Women's Breast Cancer Study. RESULTS: We identified somatic driver mutations in 252 study subjects (28.7%), but only 24 (2.7%) had clones large enough to meet criteria for CHIP. The most commonly mutated genes were DNMT3A and TET2, similar to mutations observed in noncancer cohorts. At 9-year median follow-up, we found no association between the presence of a somatic blood mutation (regardless of clone size) and adverse breast cancer (distant relapse-free survival) or non-breast cancer-related outcomes in this cohort. A subset of paired blood samples obtained over 4 years showed no evidence of mutant clonal expansion, regardless of genotype. Finally, we identified a subset of patients with likely germline mutations in genes known to contribute to inherited cancer risk, such as TP53 and ATM. CONCLUSIONS: Our data show that for young women with early-stage breast cancer, CHIP is uncommon after cytotoxic exposure, is unlikely to contribute to adverse outcomes over the decade-long follow-up and may not require additional monitoring if discovered incidentally.
Assuntos
Neoplasias da Mama , Hematopoiese Clonal , Humanos , Feminino , Idoso , Hematopoiese Clonal/genética , Estudos Prospectivos , Hematopoese/genética , Evolução Clonal/genética , Recidiva Local de Neoplasia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , MutaçãoRESUMO
Tumors acquire an increased ability to obtain and metabolize nutrients. Here, we engineered and implanted adipocytes to outcompete tumors for nutrients and show that they can substantially reduce cancer progression. Growing cells or xenografts from several cancers (breast, colon, pancreas, prostate) alongside engineered human adipocytes or adipose organoids significantly suppresses cancer progression and reduces hypoxia and angiogenesis. Transplanting modulated adipocyte organoids in pancreatic or breast cancer mouse models nearby or distal from the tumor significantly suppresses its growth. To further showcase therapeutic potential, we demonstrate that co-culturing tumor organoids derived from human breast cancers with engineered patient-derived adipocytes significantly reduces cancer growth. Combined, our results introduce a novel cancer therapeutic approach, termed adipose modulation transplantation (AMT), that can be utilized for a broad range of cancers.
RESUMO
BACKGROUND: Research on the impact of metabolic abnormalities on breast cancer prognosis is limited by small samples and assessment of laboratory values at a single time point, often prior to cancer diagnosis and treatment. In this population-based cohort, time-updated laboratory values were adjusted for cancer treatment to assess the association between metabolic risk factors (glucose, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides) and breast cancer survival. METHODS: 13,434 women diagnosed with stage I-III breast cancer from 2005-15 at Kaiser Permanente were included. All outpatient fasting glucose, HDL-C, LDL-C, and triglyceride values from diagnosis through 2019 or death were extracted from electronic medical records. Risk of breast cancer-specific mortality was evaluated with Cox proportional hazards models adjusted for metabolic labs, demographics, body mass index, diabetes, dyslipidemia and anti-hypertensive medications, tumor characteristics (stage, ER and HER2 receptor status) and cancer treatment (use of chemotherapy, tamoxifen, and aromatase inhibitors). RESULTS: Mean (SD) age at diagnosis was 62.3 (11.8) years. Over a median follow-up of 8.6 years, 2,876 patients died; 1,080 of breast cancer. Patients with low HDL-C (≤ 45 vs. > 45 mg/dL) had higher breast cancer-specific mortality (HR, 1.77; 95% CI, 1.53-2.05), as did those with elevated fasting glucose (> 99 vs. 60-99 mg/dL) (HR, 1.19; 95% CI, 1.03-1.37). Elevated levels of triglycerides and LDL-C were not associated with breast cancer-specific mortality. CONCLUSIONS: High fasting glucose and low HDL-C evaluated over time after cancer diagnosis were associated with higher breast cancer mortality independent of cancer treatments and changes in other metabolic risk factors. Future studies should address whether pharmacologic or lifestyle treatment of glucose and lipids after breast cancer diagnosis can optimize survival outcomes.
Assuntos
Neoplasias da Mama , Diabetes Mellitus , Humanos , Feminino , Pessoa de Meia-Idade , LDL-Colesterol , Neoplasias da Mama/terapia , Fatores de Risco , Triglicerídeos , HDL-Colesterol , GlucoseRESUMO
Obesity is associated with an increased risk of, and a poor prognosis for, postmenopausal (PM) breast cancer (BC). Our goal was to determine whether diet-induced obesity (DIO) promotes 1) shorter tumor latency, 2) an escape from tumor dormancy, and 3) an acceleration of tumor growth and to elucidate the underlying mechanism(s). We have developed in vitro assays and PM breast tumor models complemented by a noninvasive imaging system to detect vascular invasion of dormant tumors and have used them to determine whether obesity promotes the escape from breast tumor dormancy and tumor growth by facilitating the switch to the vascular phenotype (SVP) in PM BC. Obese mice had significantly higher tumor frequency, higher tumor volume, and lower overall survival compared with lean mice. We demonstrate that DIO exacerbates mammary gland hyperplasia and neoplasia, reduces tumor latency, and increases tumor frequency via an earlier acquisition of the SVP. DIO establishes a local and systemic proangiogenic and inflammatory environment via the up-regulation of lipocalin-2 (LCN2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) that may promote the escape from tumor dormancy and tumor progression. In addition, we show that targeting neovascularization via a multitargeted receptor tyrosine kinase inhibitor, sunitinib, can delay the acquisition of the SVP, thereby prolonging tumor latency, reducing tumor frequency, and increasing tumor-free survival, suggesting that targeting neovascularization may be a potential therapeutic strategy in obesity-associated PM BC progression. This study establishes the link between obesity and PM BC and, for the first time to our knowledge, bridges the dysfunctional neovascularization of obesity with the earliest stages of tumor development.
Assuntos
Fator 2 de Crescimento de Fibroblastos , Neoplasias Mamárias Experimentais , Menopausa , Obesidade , Fator A de Crescimento do Endotélio Vascular , Animais , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Lipocalina-2 , Neoplasias Mamárias Experimentais/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Neovascularização Patológica/patologia , Obesidade/genética , Inibidores de Proteínas Quinases , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
PURPOSE: In metastatic triple-negative breast cancer (mTNBC), consistent biomarkers of immune checkpoint inhibitor (ICI) therapy benefit remain elusive. We evaluated the immune, genomic, and transcriptomic landscape of mTNBC in patients treated with ICIs. METHODS: We identified 29 patients with mTNBC treated with pembrolizumab or atezolizumab, either alone (n = 9) or in combination with chemotherapy (n = 14) or targeted therapy (n = 6), who had tumor tissue and/or blood available before ICI therapy for whole-exome sequencing. RNA sequencing and CIBERSORTx-inferred immune population analyses were performed (n = 20). Immune cell populations and programmed death-ligand 1 expression were assessed using multiplexed immunofluorescence (n = 18). Clonal trajectories were evaluated via serial tumor/circulating tumor DNA whole-exome sequencing (n = 4). Association of biomarkers with progression-free survival and overall survival (OS) was assessed. RESULTS: Progression-free survival and OS were longer in patients with high programmed death-ligand 1 expression and tumor mutational burden. Patients with longer survival also had a higher relative inferred fraction of CD8+ T cells, activated CD4+ memory T cells, M1 macrophages, and follicular helper T cells and enrichment of inflammatory gene expression pathways. A mutational signature of defective repair of DNA damage by homologous recombination was enriched in patients with both shorter OS and primary resistance. Exploratory analysis of clonal evolution among four patients treated with programmed cell death protein 1 blockade and a tyrosine kinase inhibitor suggested that clonal stability post-treatment was associated with short time to progression. CONCLUSION: This study identified potential biomarkers of response to ICIs among patients with mTNBC: high tumor mutational burden; presence of CD8+, CD4 memory T cells, follicular helper T cells, and M1 macrophages; and inflammatory gene expression pathways. Pretreatment deficiencies in the homologous recombination DNA damage repair pathway and the absence of or minimal clonal evolution post-treatment may be associated with worse outcomes.
Assuntos
Neoplasias de Mama Triplo Negativas , Biomarcadores Tumorais/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Mutação , Intervalo Livre de Progressão , Neoplasias de Mama Triplo Negativas/tratamento farmacológicoRESUMO
The breast is a dynamic organ whose response to physiological and pathophysiological conditions alters its disease susceptibility, yet the specific effects of these clinical variables on cell state remain poorly annotated. We present a unified, high-resolution breast atlas by integrating single-cell RNA-seq, mass cytometry, and cyclic immunofluorescence, encompassing a myriad of states. We define cell subtypes within the alveolar, hormone-sensing, and basal epithelial lineages, delineating associations of several subtypes with cancer risk factors, including age, parity, and BRCA2 germline mutation. Of particular interest is a subset of alveolar cells termed basal-luminal (BL) cells, which exhibit poor transcriptional lineage fidelity, accumulate with age, and carry a gene signature associated with basal-like breast cancer. We further utilize a medium-depletion approach to identify molecular factors regulating cell-subtype proportion in organoids. Together, these data are a rich resource to elucidate diverse mammary cell states.
Assuntos
Neoplasias da Mama , Transcriptoma , Animais , Mama , Neoplasias da Mama/genética , Feminino , Humanos , Glândulas Mamárias Animais , Gravidez , Proteômica , Transcriptoma/genéticaRESUMO
PARP inhibitors (PARPi) have drastically changed the treatment landscape of advanced ovarian tumors with BRCA mutations. However, the impact of this class of inhibitors in patients with advanced BRCA-mutant breast cancer is relatively modest. Using a syngeneic genetically-engineered mouse model of breast tumor driven by Brca1 deficiency, we show that tumor-associated macrophages (TAMs) blunt PARPi efficacy both in vivo and in vitro. Mechanistically, BRCA1-deficient breast tumor cells induce pro-tumor polarization of TAMs, which in turn suppress PARPi-elicited DNA damage in tumor cells, leading to reduced production of dsDNA fragments and synthetic lethality, hence impairing STING-dependent anti-tumor immunity. STING agonists reprogram M2-like pro-tumor macrophages into an M1-like anti-tumor state in a macrophage STING-dependent manner. Systemic administration of a STING agonist breaches multiple layers of tumor cell-mediated suppression of immune cells, and synergizes with PARPi to suppress tumor growth. The therapeutic benefits of this combination require host STING and are mediated by a type I IFN response and CD8+ T cells, but do not rely on tumor cell-intrinsic STING. Our data illustrate the importance of targeting innate immune suppression to facilitate PARPi-mediated engagement of anti-tumor immunity in breast cancer.
Assuntos
Neoplasias da Mama , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Proteína BRCA1/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linfócitos T CD8-Positivos , Feminino , Humanos , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutações Sintéticas Letais , Macrófagos Associados a TumorRESUMO
Animal models are critical for the preclinical validation of cancer immunotherapies. Unfortunately, mouse breast cancer models do not faithfully reproduce the molecular subtypes and immune environment of the human disease. In particular, there are no good murine models of estrogen receptor-positive (ER+) breast cancer, the predominant subtype in patients. Here, we show that Nitroso-N-methylurea-induced mammary tumors in outbred Sprague-Dawley rats recapitulate the heterogeneity for mutational profiles, ER expression, and immune evasive mechanisms observed in human breast cancer. We demonstrate the utility of this model for preclinical studies by dissecting mechanisms of response to immunotherapy using combination TGFBR inhibition and PD-L1 blockade. Short-term treatment of early-stage tumors induced durable responses. Gene expression profiling and spatial mapping classified tumors as inflammatory and noninflammatory, and identified IFNγ, T-cell receptor (TCR), and B-cell receptor (BCR) signaling, CD74/MHC II, and epithelium-interacting CD8+ T cells as markers of response, whereas the complement system, M2 macrophage phenotype, and translation in mitochondria were associated with resistance. We found that the expression of CD74 correlated with leukocyte fraction and TCR diversity in human breast cancer. We identified a subset of rat ER+ tumors marked by expression of antigen-processing genes that had an active immune environment and responded to treatment. A gene signature characteristic of these tumors predicted disease-free survival in patients with ER+ Luminal A breast cancer and overall survival in patients with metastatic breast cancer receiving anti-PD-L1 therapy. We demonstrate the usefulness of this preclinical model for immunotherapy and suggest examination to expand immunotherapy to a subset of patients with ER+ disease. See related Spotlight by Roussos Torres, p. 672.