Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cancers (Basel) ; 16(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39272925

RESUMO

Breast cancer (BC) continues to significantly impact women worldwide. Numerous studies show that physical activity (PA) significantly enhances the quality of life, aids recovery, and improves survival rates in BC patients. PA's influence extends to altering DNA methylation patterns on both a global and gene-specific scale, potentially reverting abnormal DNA methylation, associated with carcinogenesis and various pathologies. This review consolidates the findings of the current literature, highlighting PA's impact on DNA methylation in BC patients. Our systematic analysis indicates that PA may elevate global DNA methylation within tumour tissues. Furthermore, it appears to modify gene-specific promoter methylation across a wide spectrum of genes in various tissues. Through bioinformatic analysis, to investigate the functional enrichment of these affected genes, we identified a predominant enrichment in metabolic pathways, cell cycle regulation, cell cycle checkpoints, mitosis, cellular stress responses, and molecular functions governing diverse binding processes. The Human Protein Atlas corroborates this enrichment, indicating gene functionality across 266 tissues, notably within various breast tissues. This systematic review unveils PA's capacity to systematically alter DNA methylation patterns across multiple tissues, particularly in BC patients. Emphasising its influence on crucial biological processes and functions, this alteration holds potential for restoring normal cellular functionality and the cell cycle. This reversal of cancer-associated patterns could potentially enhance recovery and improve survival outcomes.

2.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125678

RESUMO

Moringa oleifera is widely grown throughout the tropics and increasingly used for its therapeutic and nutraceutical properties. These properties are attributed to potent antioxidant and metabolism regulators, including glucosinolates/isothiocyanates as well as flavonoids, polyphenols, and phenolic acids. Research to date largely consists of geographically limited studies that only examine material available locally. These practices make it unclear as to whether moringa samples from one area are superior to another, which would require identifying superior variants and distributing them globally. Alternatively, the finding that globally cultivated moringa material is essentially functionally equivalent means that users can easily sample material available locally. We brought together accessions of Moringa oleifera from four continents and nine countries and grew them together in a common garden. We performed a metabolomic analysis of leaf extracts (MOLE) using an LC-MSMS ZenoTOF 7600 mass spectrometry system. The antioxidant capacity of leaf samples evaluated using the Total Antioxidant Capacity assay did not show any significant difference between extracts. MOLE samples were then tested for their antioxidant activity on C2C12 myotubes challenged with an oxidative insult. Hydrogen peroxide (H2O2) was added to the myotubes after pretreatment with different extracts. H2O2 exposure caused an increase in cell death that was diminished in all samples pretreated with moringa extracts. Our results show that Moringa oleifera leaf extract is effective in reducing the damaging effect of H2O2 in C2C12 myotubes irrespective of geographical origin. These results are encouraging because they suggest that the use of moringa for its therapeutic benefits can proceed without the need for the lengthy and complex global exchange of materials between regions.


Assuntos
Antioxidantes , Metabolômica , Moringa oleifera , Fibras Musculares Esqueléticas , Extratos Vegetais , Folhas de Planta , Moringa oleifera/química , Moringa oleifera/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metabolômica/métodos , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos
3.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201283

RESUMO

Biological age, reflecting the cumulative damage in the body over a lifespan, is a dynamic measure more indicative of individual health than chronological age. Accelerated aging, when biological age surpasses chronological age, is implicated in poorer clinical outcomes, especially for breast cancer (BC) survivors undergoing treatments. This preliminary study investigates the impact of a 16-week online supervised physical activity (PA) intervention on biological age in post-surgery female BC patients. Telomere length was measured using qPCR, and the ELOVL2-based epigenetic clock was assessed via DNA methylation pyrosequencing of the ELOVL2 promoter region. Telomere length remained unchanged, but the ELOVL2 epigenetic clock indicated a significant decrease in biological age in the PA group, suggesting the potential of PA interventions to reverse accelerated aging processes in BC survivors. The exercise group showed improved cardiovascular fitness, highlighting PA's health impact. Finally, the reduction in biological age, as measured by the ELOVL2 epigenetic clock, was significantly associated with improvements in cardiovascular fitness and handgrip strength, supporting improved recovery. Epigenetic clocks can potentially assess health status and recovery progress in BC patients, identifying at-risk individuals in clinical practice. This study provides potential and valuable insights into how PA benefits BC survivors' health, supporting the immediate benefits of a 16-week exercise intervention in mitigating accelerated aging. The findings could suggest a holistic approach to improving the health and recovery of post-surgery BC patients.


Assuntos
Envelhecimento , Neoplasias da Mama , Metilação de DNA , Epigênese Genética , Exercício Físico , Elongases de Ácidos Graxos , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Pessoa de Meia-Idade , Envelhecimento/genética , Elongases de Ácidos Graxos/genética , Idoso , Adulto , Regiões Promotoras Genéticas , Telômero/genética
4.
Redox Biol ; 70: 103033, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38211440

RESUMO

Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Qualidade de Vida , Estudos Longitudinais , Metilação de DNA , Exercício Físico , Oxirredução , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Progressão da Doença , RNA Mensageiro/metabolismo , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética
5.
Antioxidants (Basel) ; 12(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238004

RESUMO

Breast cancer (BC) is one of the most commonly diagnosed types of cancer in women. Oxidative stress may contribute to cancer etiology through several mechanisms. A large body of evidence indicates that physical activity (PA) has positive effects on different aspects of BC evolution, including mitigation of negative effects induced by medical treatment. With the aim to verify the capacity of PA to counteract negative effects of BC treatment on systemic redox homeostasis in postsurgery female BC patients, we have examined the modulation of circulating levels of oxidative stress and inflammation markers. Moreover, we evaluated the impacts on physical fitness and mental well-being by measuring functional parameters, body mass index, body composition, health-related quality of life (QoL), and fatigue. Our investigation revealed that PA was effective in maintaining plasma levels of superoxide dismutase (SOD) activity and tGSH, as well as peripheral blood mononuclear cells' (PBMCs) mRNA levels of SOD1 and heat-shock protein 27. Moreover, we found a significant decrease in plasma interleukin-6 (≈0.57 ± 0.23-fold change, p < 0.05) and increases in both interleukin-10 (≈1.15 ± 0.35-fold change, p < 0.05) and PBMCs' mRNA level of SOD2 (≈1.87 ± 0.36-fold change, p < 0.05). Finally, PA improves functional parameters (6 min walking test, ≈+6.50%, p < 0.01; Borg, ≈-58.18%, p < 0.01; sit-and-reach, ≈+250.00%, p < 0.01; scratch right, ≈-24.12%, and left, ≈-18.81%, p < 0.01) and body composition (free fat mass, ≈+2.80%, p < 0.05; fat mass, ≈-6.93%, p < 0.05) as well as the QoL (physical function, ≈+5.78%, p < 0.05) and fatigue (cognitive fatigue, ≈-60%, p < 0.05) parameters. These results suggest that a specific PA program not only is effective in improving functional and anthropometric parameters but may also activate cellular responses through a multitude of actions in postsurgery BC patients undergoing adjuvant therapy. These may include modulation of gene expression and protein activity and impacting several signaling pathways/biological activities involved in tumor-cell growth; metastasis; and inflammation, as well as moderating distress symptoms known to negatively affect QoL.

6.
Cancers (Basel) ; 14(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35565417

RESUMO

The increase in breast cancer (BC) survival has determined a growing survivor population that seems to develop several comorbidities and, specifically, treatment-induced cardiovascular disease (CVD), especially those patients treated with anthracyclines. Indeed, it is known that these compounds act through the induction of supraphysiological production of reactive oxygen species (ROS), which appear to be central mediators of numerous direct and indirect cardiac adverse consequences. Evidence suggests that physical exercise (PE) practised before, during or after BC treatments could represent a viable non-pharmacological strategy as it increases heart tolerance against many cardiotoxic agents, and therefore improves several functional, subclinical, and clinical parameters. At molecular level, the cardioprotective effects are mainly associated with an exercise-induced increase of stress response proteins (HSP60 and HSP70) and antioxidant (SOD activity, GSH), as well as a decrease in lipid peroxidation, and pro-apoptotic proteins such as Bax, Bax-to-Bcl-2 ratio. Moreover, this protection can potentially be explained by a preservation of myosin heavy chain (MHC) isoform distribution. Despite this knowledge, it is not clear which type of exercise should be suggested in BC patient undergoing anthracycline treatment. This highlights the lack of special guidelines on how affected patients should be managed more efficiently. This review offers a general framework for the role of anthracyclines in the physio-pathological mechanisms of cardiotoxicity and the potential protective role of PE. Finally, potential exercise-based strategies are discussed on the basis of scientific findings.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34639267

RESUMO

Background: The phosphodiesterase type 5 inhibitor (PDE5I) tadalafil, in addition to its therapeutic role, has shown antioxidant effects in different in vivo models. Supplementation with antioxidants has received interest as a suitable tool for preventing or reducing exercise-related oxidative stress, possibly leading to the improvement of sport performance in athletes. However, the use/abuse of these substances must be evaluated not only within the context of amateur sport, but especially in competitions where elite athletes are more exposed to stressful physical practice. To date, very few human studies have addressed the influence of the administration of PDE5Is on redox balance in subjects with a fitness level comparable to elite athletes; therefore, the aim of this study was to investigate for the first time whether acute ingestion of tadalafil could affect plasma markers related to cellular damage, redox homeostasis, and blood polyamines levels in healthy subjects with an elevated cardiorespiratory fitness level. Methods: Healthy male volunteers (n = 12), with a VO2max range of 40.1-56.0 mL/(kg × min), were administered with a single dose of tadalafil (20 mg). Plasma molecules related to muscle damage and redox-homeostasis, such as creatine kinase (CK), lactate dehydrogenase (LDH), total antioxidant capacity (TAC), reduced/oxidized glutathione ratio (GSH/GSSG), free thiols (FTH), antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)), as well as thiobarbituric acid reactive substances (TBARs), protein carbonyls (PrCAR), and polyamine levels (spermine (Spm) and spermidine (Spd)) were evaluated immediately before and 2, 6 and 24 hours after the acute tadalafil administration. Results: A single tadalafil administration induced an increase in CK and LDH plasma levels 24 after consumption. No effects were observed on redox homeostasis or antioxidant enzyme activities, and neither were they observed on the oxidation target molecules or polyamines levels. Conclusion: Our results show that in subjects with an elevated fitness level, a single administration of tadalafil induced a significant increase in muscle damage target without affecting plasma antioxidant status.


Assuntos
Glutationa , Poliaminas , Antioxidantes , Catalase/metabolismo , Exercício Físico , Glutationa/metabolismo , Glutationa Peroxidase , Homeostase , Humanos , Masculino , Oxirredução , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Tadalafila
8.
Artigo em Inglês | MEDLINE | ID: mdl-34574758

RESUMO

Breast cancer (BC) is the most commonly diagnosed cancer among women worldwide and the most common cause of cancer-related death. To date, it is still a challenge to estimate the magnitude of the clinical impact of physical activity (PA) on those parameters producing significative changes in future BC risk and disease progression. However, studies conducted in recent years highlight the role of PA not only as a protective factor for the development of ER+ breast cancer but, more generally, as a useful tool in the management of BC treatment as an adjuvant to traditional therapies. In this review, we focused our attention on data obtained from human studies analyzing, at each level of disease prevention (i.e., primary, secondary, tertiary and quaternary), the positive impact of PA/exercise in ER+ BC, a subtype representing approximately 70% of all BC diagnoses. Moreover, given the importance of estrogen receptors and body composition (i.e., adipose tissue) in this subtype of BC, an overview of their role will also be made throughout this review.


Assuntos
Neoplasias da Mama , Composição Corporal , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/prevenção & controle , Estrogênios , Exercício Físico , Feminino , Humanos , Pós-Menopausa , Fatores de Risco
9.
Molecules ; 26(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443628

RESUMO

Moringa oleifera is a multi-purpose herbal plant with numerous health benefits. In skeletal muscle cells, Moringa oleifera leaf extract (MOLE) acts by increasing the oxidative metabolism through the SIRT1-PPARα pathway. SIRT1, besides being a critical energy sensor, is involved in the activation related to redox homeostasis of transcription factors such as the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present study was to evaluate in vitro the capacity of MOLE to influence the redox status in C2C12 myotubes through the modulation of the total antioxidant capacity (TAC), glutathione levels, Nrf2 and its target gene heme oxygenase-1 (HO-1) expression, as well as enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and transferase (GST). Moreover, the impact of MOLE supplementation on lipid peroxidation and oxidative damage (i.e., TBARS and protein carbonyls) was evaluated. Our results highlight for the first time that MOLE increased not only Nrf2 and HO-1 protein levels in a dose-dependent manner, but also improved glutathione redox homeostasis and the enzyme activities of CAT, SOD, GPx and GST. Therefore, it is intriguing to speculate that MOLE supplementation could represent a valuable nutrition for the health of skeletal muscles.


Assuntos
Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Moringa oleifera/química , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Regulação para Cima/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Linhagem Celular , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Homeostase/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo
10.
FASEB J ; 35(2): e21328, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33433932

RESUMO

To date, there are limited and incomplete data on possible sex-based differences in fiber-types of skeletal muscle and their response to physical exercise. Adult healthy male and female mice completed a single bout of endurance exercise to examine the sex-based differences of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), heat shock protein 60 (Hsp60), interleukin 6 (IL-6) expression, as well as the Myosin Heavy Chain (MHC) fiber-type distribution in soleus and extensor digitorum longus (EDL) muscles. Our results showed for the first time that in male soleus, a muscle rich of type IIa fibers, endurance exercise activates specifically genes involved in mitochondrial biogenesis such as PGC1 α1 isoform, Hsp60 and IL-6, whereas the expression of PGC1 α2 and α3 was significantly upregulated in EDL muscle, a fast-twitch skeletal muscle, independently from the gender. Moreover, we found that the acute response of different PGC1α isoforms was muscle and gender dependent. These findings add a new piece to the huge puzzle of muscle response to physical exercise. Given the importance of these genes in the physiological response of the muscle to exercise, we strongly believe that our data could support future research studies to personalize a specific and sex-based exercise training protocol.


Assuntos
Atividade Motora , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Chaperonina 60/genética , Chaperonina 60/metabolismo , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores Sexuais
11.
Cell Stress Chaperones ; 26(1): 19-28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33111264

RESUMO

AlphaB-crystallin (HSPB5) is one of the most prominent and well-studied members of the small heat shock protein (sHsp) family. To date, it is known that this protein modulates significant cellular processes and therefore, it is not surprising that its deregulation is involved in various human pathologies, including cancer diseases. Despite the pathogenic significance of HSPB5 in cancer and its regulatory mechanism related to aggressiveness is poorly understood, several reports describe the association of breast carcinoma progression with HSPB5, whose expression is also considered an independent predictor of breast cancer metastasis to the brain. Indeed, numerous authors indicate HSPB5 as a new valuable biomarker for clinicopathological parameters and poor prognosis in breast cancer. Considering the cytoprotective, anti-apoptotic, pro-angiogenic, and pro-metastatic properties of the sHsps, it is not surprising that they are considered as promising targets for anticancer treatment, even though, at present, a deeper understanding of their mode of action is needed to allow the development of precise therapeutic interventions. Data on the direct inhibition of different sHsps demonstrate promising results in cancer pathologies; however, specific strategies against HSPB5 have not been considered. This review highlights the most relevant findings on HSPB5 and its role in breast cancer, as well as the possible strategies in using HSPB5 inhibition for therapeutic purposes.


Assuntos
Neoplasias da Mama/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Descoberta de Drogas , Feminino , Humanos , Terapia de Alvo Molecular , Cadeia B de alfa-Cristalina/análise , Cadeia B de alfa-Cristalina/antagonistas & inibidores
12.
Free Radic Biol Med ; 160: 28-39, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32768573

RESUMO

Long non-coding RNAs (lncRNAs) play critical roles in various biological functions and disease processes including cancer. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was initially identified as a lncRNA with elevated expression in primary human non-small cell lung tumors with high propensity to metastasize, and subsequently shown to be highly expressed in numerous other human cancers including breast, ovarian, prostate, cervical, endometrial, gastric, pancreatic, sarcoma, colorectal, bladder, brain, multiple myeloma, and lymphoma. MALAT1 is deeply involved in several physiological processes, including alternative splicing, epigenetic modification of gene expression, cellular senescence, healthy aging, and redox homeostasis. The aim of this work was to investigate the modulation exerted by a single bout of endurance exercise on the level of MALAT1 expression in peripheral blood mononuclear cells (PBMCs) from healthy male donors displaying different training status and redox homeostasis features. Our findings show that MALAT1 is downregulated after acute endurance exercise in subjects whose fitness level guarantee a high expression of SOD1 and SOD2 antioxidant genes and low levels of endogenous oxidative damage. In vitro protocols in Jurkat lymphoblastoid cells exposed to pro-oxidant environment confirmed the link between MALAT1 expression and antioxidant gene modulation, documenting p53 phosphorylation and its recruitment to MALAT1 promoter. Remarkably, analyses of Microarray-Based Gene Expression Profiling revealed high MALAT1 expression in leukemia patients in comparison to healthy control and a significant negative correlation between MALAT1 and SOD1 expression. Collectively our results highlight the beneficial effect of a physically active lifestyle in counteracting aberrant cancer-related gene expression programs by improving the redox buffering capacity.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Leucócitos Mononucleares , Neoplasias Pulmonares/genética , Masculino , RNA Longo não Codificante
13.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365773

RESUMO

Oxidative stress linked to vascular damage plays an important role in the pathogenesis of systemic sclerosis (SSc). Indeed, vascular damage at nailfold capillaroscopy in patients with Raynaud's Phenomenon (RP) is a major risk factor for the development of SSc together with the presence of specific autoantiobodies. Here, we investigated the effects of the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil, currently used in the management of RP, in modulating the proinflammatory response of dermal fibroblasts to oxidative stress in vitro. Human fibroblasts isolated from SSc patients and healthy controls were exposed to exogenous reactive oxygen species (ROS) (100 µM H2O2), in the presence or absence of sildenafil (1 µM). Treatment with sildenafil significantly reduced dermal fibroblast gene expression and cellular release of IL-6, known to play a central role in the pathogenesis of tissue damage in SSc and IL-8, directly induced by ROS. This reduction was associated with suppression of STAT3-, ERK-, NF-κB-, and PKB/AKT-dependent pathways. Our findings support the notion that the employment of PDE5i in the management of RP may be explored for its efficacy in modulating the oxidative stress-induced proinflammatory activation of dermal fibroblasts in vivo and may ultimately aid in the prevention of tissue damage caused by SSc.


Assuntos
Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Interleucina-6/genética , Interleucina-8/genética , Inibidores da Fosfodiesterase 5/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Citrato de Sildenafila/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Transcrição Gênica
14.
Res Sports Med ; 27(2): 147-165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30596287

RESUMO

Supplementation with antioxidants received interest as suitable tool for preventing or reducing exercise-related oxidative stress possibly leading to improvement of sport performance in athletes. To date, it is difficult to reach a conclusion on the relevance of antioxidants supplementation in athletes and/or well-trained people. The general picture that emerges from the available data indicates that antioxidants requirement can be covered by dosage equal or close to the recommended dietary allowance (RDA) provided by consumption of a balanced, well-diversified diet. Nevertheless, it remains open the possibility that in specific context, such as in sports characterized by high intensity and/or exhaustive regimes, supplementation with antioxidants could be appropriated to avoid or reduce the damaging effect of these type of exercise. This review will discuss the findings of a number of key studies on the advantages and/or disadvantages for athletes of using antioxidants supplementation, either individually or in combination.


Assuntos
Antioxidantes/administração & dosagem , Atletas , Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Homeostase/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Suplementos Nutricionais , Humanos , Oxirredução
15.
Free Radic Res ; 52(6): 639-647, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29589779

RESUMO

In skeletal muscle, which mainly contains postmitotic myonuclei, it has been suggested that telomere length remains roughly constant throughout adult life, or shortens in response to physiopathological conditions in muscle diseases or in the elderly. However, telomere length results from both the replicative history of a specific tissue and the exposure to environmental, DNA damage-related factors, therefore the predictive biological significance of telomere measures should combine the analysis of the various interactive factors. In the present study, we analysed any relationship between telomere length [mean and minimum terminal restriction fragment (TRF) length] chronological age, oxidative damage (4-HNE, protein carbonyls), catalase activity, and heat shock proteins expression (αB-crystallin, Hsp27, Hsp90) in semitendinous muscle biopsies of 26 healthy adult males between 20 and 50 years of age, also exploring the influence of regular exercise participation. The multiple linear regression analysis identified age, 4-HNE, catalase, and training status as significant independent variables associated with telomere length and jointly accounting for ∼30-36% of interindividual variation in mean and/or minimum TRF length. No association has been identified between telomere length and protein carbonyl, αB-crystallin, Hsp27, and Hsp90, as well as between age and the variables related to stress response. Our results showed that skeletal muscle from healthy adults displays an age-dependent telomere attrition and that oxidised environment plays an age-independent contribution, partially influenced by exercise training.


Assuntos
Aldeídos/metabolismo , Catalase/metabolismo , Exercício Físico , Músculo Esquelético/metabolismo , Telômero/ultraestrutura , Adulto , Fatores Etários , Biomarcadores/metabolismo , Biópsia , Catalase/genética , Expressão Gênica , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico , Humanos , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares , Estresse Oxidativo , Carbonilação Proteica , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
16.
BMC Genomics ; 18(Suppl 8): 802, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143608

RESUMO

Epigenetic modification refers to heritable changes in gene function that cannot be explained by alterations in the DNA sequence. The current literature clearly demonstrates that the epigenetic response is highly dynamic and influenced by different biological and environmental factors such as aging, nutrient availability and physical exercise. As such, it is well accepted that physical activity and exercise can modulate gene expression through epigenetic alternations although the type and duration of exercise eliciting specific epigenetic effects that can result in health benefits and prevent chronic diseases remains to be determined. This review highlights the most significant findings from epigenetic studies involving physical activity/exercise interventions known to benefit chronic diseases such as metabolic syndrome, diabetes, cancer, cardiovascular and neurodegenerative diseases.


Assuntos
Doença/genética , Epigênese Genética , Exercício Físico , Medicina Preventiva , Humanos
17.
Free Radic Biol Med ; 86: 331-42, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26066304

RESUMO

The small heat shock protein α-B-crystallin (CRYAB) is critically involved in stress-related cellular processes such as differentiation, apoptosis, and redox homeostasis. The up-regulation of CRYAB plays a key role in the cytoprotective and antioxidant response, but the molecular pathway driving its expression in muscle cells during oxidative stress still remains unknown. Here we show that noncytotoxic exposure to sodium meta-arsenite (NaAsO2) inducing redox imbalance is able to increase the CRYAB content of C2C12 myoblasts in a transcription-dependent manner. Our in silico analysis revealed a genomic region upstream of the Cryab promoter containing two putative antioxidant-responsive elements motifs and one AP-1-like binding site. The redox-sensitive transcription factors Nrf2 and the AP-1 component c-Jun were found to be up-regulated in NaAsO2-treated cells, and we demonstrated a specific NaAsO2-mediated increase of c-Jun and Nrf2 binding activity to the genomic region identified, supporting their putative involvement in CRYAB regulation following a shift in redox balance. These changes also correlated with a specific phosphorylation of JNK and p38 MAPK kinases, the well-known molecular mediators of signaling pathways leading to the activation of these transcription factors. Pretreatment of C2C12 cells with the JNK inhibitor SP600125 induced a decrease in c-Jun and Nrf2 content and was able to counteract the NaAsO2-mediated increase in CRYAB expression. Thus these data show a direct role of JNK in CRYAB regulation under redox imbalance and also point to a previously unrecognized link between c-Jun and Nrf2 transcription factors and redox-induced CRYAB expression in muscle cells.


Assuntos
Sistema de Sinalização das MAP Quinases , Fibras Musculares Esqueléticas/metabolismo , Ativação Transcricional , Cadeia B de alfa-Cristalina/metabolismo , Animais , Elementos de Resposta Antioxidante , Sequência de Bases , Linhagem Celular , Camundongos , Dados de Sequência Molecular , Mioblastos Esqueléticos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Cadeia B de alfa-Cristalina/genética
18.
Oxid Med Cell Longev ; 2015: 981242, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789083

RESUMO

OBJECTIVE: Hyperglycemia leads to increased production of reactive oxygen species (ROS) in type 2 diabetes, which reduces cellular antioxidant defenses and induces DNA lesions. The aim of this study was to investigate the effects on redox homeostasis and DNA oxidative damage of exercise training in patients with type 2 diabetes compared with nondiabetic individuals. METHODS AND RESULTS: 12 sedentary type 2 diabetic males (62.1 ± 4.3 yrs) and 12 sedentary healthy males (61.7 ± 3.9 yrs) were exposed to 4-month moderate training, 3 times per week, to evaluate the effect on plasma biomarkers of oxidative stress malondialdehyde and antioxidant status (GSSG, GSH/GSSG, and ascorbic acid) as well as basal and H2O2-induced DNA damage trough alkaline comet assay in peripheral blood lymphocytes. After training, glutathione and ascorbic acid levels increased in both groups, but only in diabetics the malondialdehyde as well as the DNA damage decreased. CONCLUSION: Our study demonstrates for the first time that moderate exercise training is not only effective in improving the redox homeostasis, through an increase of the endogenous antioxidant defences in healthy as well as in diabetic patients, but also, specifically in diabetic patients, effective in lowering the susceptibility to oxidative DNA damage and the lipid peroxidation levels.


Assuntos
Dano ao DNA , Diabetes Mellitus Tipo 2/patologia , Exercício Físico , Estresse Oxidativo , Idoso , Ácido Ascórbico/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Células Cultivadas , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos
19.
Redox Biol ; 2: 65-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25460722

RESUMO

We recently demonstrated that low frequency, moderate intensity, explosive-type resistance training (EMRT) is highly beneficial in elderly subjects towards muscle strength and power, with a systemic adaptive response of anti-oxidant and stress-induced markers. In the present study, we aimed to evaluate the impact of EMRT on oxidative stress biomarkers induced in old people (70-75 years) by a single bout of acute, intense exercise. Sixteen subjects randomly assigned to either a control, not exercising group (n=8) or a trained group performing EMRT protocol for 12-weeks (n=8), were submitted to a graded maximal exercise stress test (GXT) at baseline and after the 12-weeks of EMRT protocol, with blood samples collected before, immediately after, 1 and 24h post-GXT test. Blood glutathione (GSH, GSSG, GSH/GSSG), plasma malonaldehyde (MDA), protein carbonyls and creatine kinase (CK) levels, as well as PBMCs cellular damage (Comet assay, apoptosis) and stress-protein response (Hsp70 and Hsp27 expression) were evaluated. The use of multiple biomarkers allowed us to confirm that EMRT per se neither affected redox homeostasis nor induced any cellular and oxidative damage. Following the GXT, the EMRT group displayed a higher GSH/GSSG ratio and a less pronounced increase in MDA, protein carbonyls and CK levels compared to control group. Moreover, we found that Hsp70 and Hsp27 proteins were induced after GXT only in EMRT group, while any significant modification within 24h was detected in untrained group. Apoptosis rates and DNA damage did not show any significant variation in relation to EMRT and/or GXT. In conclusion, the adherence to an EMRT protocol is able to induce a cellular adaptation allowing healthy elderly trained subjects to cope with the oxidative stress induced by an acute exercise more effectively than the aged-matched sedentary subjects.


Assuntos
Estresse Oxidativo , Resistência Física , Treinamento Resistido , Idoso , Apoptose , Feminino , Glutationa/sangue , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade
20.
PLoS One ; 9(7): e102993, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054279

RESUMO

Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the activity of PRP during the process of muscle healing. The aim of the present study was to verify whether the local delivery of PRP modulates specific molecular events involved in the early stages of the muscle regeneration process. The right flexor sublimis muscle of anesthetized Wistar rats was mechanically injured and either treated with PRP or received no treatment. At day 2 and 5 after surgery, the animals were sacrificed and the muscle samples evaluated at molecular levels. PRP treatment increased significantly the mRNA level of the pro-inflammatory cytokines IL-1ß, and TGF-ß1. This phenomenon induced an increased expression at mRNA and/or protein levels of several myogenic regulatory factors such as MyoD1, Myf5 and Pax7, as well as the muscular isoform of insulin-like growth factor1 (IGF-1Eb). No effect was detected with respect to VEGF-A expression. In addition, PRP application modulated the expression of miR-133a together with its known target serum response factor (SRF); increased the phosphorylation of αB-cristallin, with a significant improvement in several apoptotic parameters (NF-κB-p65 and caspase 3), indexes of augmented cell survival. The results of the present study indicates that the effect of PRP in skeletal muscle injury repair is due both to the modulation of the molecular mediators of the inflammatory and myogenic pathways, and to the control of secondary pathways such as those regulated by myomiRNAs and heat shock proteins, which contribute to proper and effective tissue regeneration.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Plasma Rico em Plaquetas , Regeneração/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Interleucina-1beta/metabolismo , Masculino , Modelos Animais , Músculo Esquelético/lesões , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA