Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
JCI Insight ; 9(7)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441970

RESUMO

Compromised vascular integrity facilitates extravasation of cancer cells and promotes metastatic dissemination. CD93 has emerged as a target for antiangiogenic therapy, but its importance for vascular integrity in metastatic cancers has not been evaluated. Here, we demonstrate that CD93 participates in maintaining the endothelial barrier and reducing metastatic dissemination. Primary melanoma growth was hampered in CD93-/- mice, but metastatic dissemination was increased and associated with disruption of adherens and tight junctions in tumor endothelial cells and elevated expression of matrix metalloprotease 9 at the metastatic site. CD93 directly interacted with vascular endothelial growth factor receptor 2 (VEGFR2) and its absence led to VEGF-induced hyperphosphorylation of VEGFR2 in endothelial cells. Antagonistic anti-VEGFR2 antibody therapy rescued endothelial barrier function and reduced the metastatic burden in CD93-/- mice to wild-type levels. These findings reveal a key role of CD93 in maintaining vascular integrity, which has implications for pathological angiogenesis and endothelial barrier function in metastatic cancer.


Assuntos
Células Endoteliais , Neoplasias , Animais , Camundongos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Cancer Cell ; 42(3): 328-330, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38366590

RESUMO

Brain metastases are clinically challenging due to the unique brain microenvironment. In this issue of Cancer Cell, Bejarano et al. use transcriptional profiling and data integration to shed light on the molecular and cellular composition of the vasculature in brain metastases, identifying CD276 as an immunomodulatory target for therapy.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/secundário , Imunomodulação , Microambiente Tumoral , Antígenos B7
3.
Front Immunol ; 14: 1275378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954592

RESUMO

Tertiary lymphoid structures (TLS) are lymph node-like aggregates that can form in association with chronic inflammation or cancer. Mature TLS are organized into B and T cell zones, and are not encapsulated but include all cell types necessary for eliciting an adaptive immune response. TLS have been observed in various cancer types and are generally associated with a positive prognosis as well as increased sensitivity to cancer immunotherapy. However, a comprehensive understanding of the roles of TLS in eliciting anti-tumor immunity as well as the mechanisms involved in their formation and function is still lacking. Further studies in orthotopic, immunocompetent cancer models are necessary to evaluate the influence of TLS on cancer therapies, and to develop new treatments that promote their formation in cancer. Here, we review key insights obtained from functional murine studies, discuss appropriate models that can be used to study cancer-associated TLS, and suggest guidelines on how to identify TLS and distinguish them from other antigen-presenting niches.


Assuntos
Neoplasias , Estruturas Linfoides Terciárias , Animais , Camundongos , Neoplasias/terapia , Neoplasias/patologia , Prognóstico , Linfonodos/metabolismo , Inflamação/patologia
4.
J Clin Invest ; 133(20)2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37651195

RESUMO

Endothelial phospholipase Cγ (PLCγ) is essential for vascular development; however, its role in healthy, mature, or pathological vessels is unexplored. Here, we show that PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2Y1173F/+ mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B cells, helper T cells and regulatory T cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C-dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS and suppressed vascular leakage. Thus, we believe that we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier and results in loss of antitumor immunity.


Assuntos
Permeabilidade Capilar , Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Permeabilidade Capilar/genética , Carcinoma de Células Renais/imunologia , Neoplasias Renais/imunologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosforilação , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína Tirosina Quinase CSK/metabolismo
5.
Nat Commun ; 14(1): 4732, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563127

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy is rapidly advancing as cancer treatment, however, designing an optimal CAR remains challenging. A single-chain variable fragment (scFv) is generally used as CAR targeting moiety, wherein the complementarity-determining regions (CDRs) define its specificity. We report here that the CDR loops can cause CAR clustering, leading to antigen-independent tonic signalling and subsequent CAR-T cell dysfunction. We show via CARs incorporating scFvs with identical framework and varying CDR sequences that CARs may cluster on the T cell surface, which leads to antigen-independent CAR-T cell activation, characterized by increased cell size and interferon (IFN)-γ secretion. This results in CAR-T cell exhaustion, activation-induced cell death and reduced responsiveness to target-antigen-expressing tumour cells. CDR mutagenesis confirms that the CAR-clustering is mediated by CDR-loops. In summary, antigen-independent tonic signalling can be induced by CDR-mediated CAR clustering, which could not be predicted from the scFv sequences, but could be tested for by evaluating the activity of unstimulated CAR-T cells.


Assuntos
Regiões Determinantes de Complementaridade , Anticorpos de Cadeia Única , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/metabolismo , Linfócitos T , Imunoterapia Adotiva/métodos , Transdução de Sinais , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Cancer Cell ; 41(6): 1134-1151.e10, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172581

RESUMO

Glioblastomas are aggressive brain tumors that are largely immunotherapy resistant. This is associated with immunosuppression and a dysfunctional tumor vasculature, which hinder T cell infiltration. LIGHT/TNFSF14 can induce high endothelial venules (HEVs) and tertiary lymphoid structures (TLS), suggesting that its therapeutic expression could promote T cell recruitment. Here, we use a brain endothelial cell-targeted adeno-associated viral (AAV) vector to express LIGHT in the glioma vasculature (AAV-LIGHT). We found that systemic AAV-LIGHT treatment induces tumor-associated HEVs and T cell-rich TLS, prolonging survival in αPD-1-resistant murine glioma. AAV-LIGHT treatment reduces T cell exhaustion and promotes TCF1+CD8+ stem-like T cells, which reside in TLS and intratumoral antigen-presenting niches. Tumor regression upon AAV-LIGHT therapy correlates with tumor-specific cytotoxic/memory T cell responses. Our work reveals that altering vascular phenotype through vessel-targeted expression of LIGHT promotes efficient anti-tumor T cell responses and prolongs survival in glioma. These findings have broader implications for treatment of other immunotherapy-resistant cancers.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Camundongos , Animais , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/irrigação sanguínea , Glioblastoma/genética , Fenótipo , Encéfalo , Microambiente Tumoral
8.
Neuro Oncol ; 25(6): 1073-1084, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36591963

RESUMO

BACKGROUND: Systemic delivery of anti-tumor therapeutic agents to brain tumors is thwarted by the blood-brain barrier (BBB), an organotypic specialization of brain endothelial cells (ECs). A failure of pharmacological compounds to cross BBB is one culprit for the dismal prognosis of glioblastoma (GBM) patients. Identification of novel vascular targets to overcome the challenges posed by the BBB in tumors for GBM treatment is urgently needed. METHODS: Temozolomide (TMZ) delivery was investigated in CT2A and PDGFB-driven RCAS/tv-a orthotopic glioma models. Transcriptome analysis was performed on ECs from murine gliomas. Mfsd2a deficient, Cav1 deficient, and Mfsd2a EC-specific inducible mice were developed to study the underlying molecular mechanisms. RESULTS: We demonstrated that inhibiting Wnt signaling by LGK974 could increase TMZ delivery and sensitize glioma to chemotherapy in both murine glioma models. Transcriptome analysis of ECs from murine gliomas revealed that Wnt signaling inhibition enhanced vascular transcytosis as indicated by the upregulation of PLVAP and downregulation of MFSD2A. Mfsd2a deficiency in mice enhances TMZ delivery in tumors, whereas constitutive expression of Mfsd2a in ECs suppresses the enhanced TMZ delivery induced by Wnt pathway inhibition in murine glioma. In addition, Wnt signaling inhibition enhanced caveolin-1 (Cav1)-positive caveolae-mediated transcytosis in tumor ECs. Moreover, Wnt signaling inhibitor or Mfsd2a deficiency fails to enhance TMZ penetration in tumors from Cav1-deficient mice. CONCLUSIONS: These results demonstrated that Wnt signaling regulates MFSD2A-dependent TMZ delivery through a caveolae-mediated EC transcytosis pathway. Our findings identify Wnt signaling as a promising therapeutic target to improve drug delivery for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Simportadores , Camundongos , Animais , Via de Sinalização Wnt , Células Endoteliais/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Temozolomida/uso terapêutico , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Transcitose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Simportadores/metabolismo , Simportadores/uso terapêutico
11.
Cancer Immunol Immunother ; 71(8): 2029-2040, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35018481

RESUMO

Galectin-1 (Gal1) is a glycan-binding protein that promotes tumor progression by several distinct mechanisms. Through direct binding to vascular endothelial growth factor (VEGF)-receptor 2, Gal1 is able to induce VEGF-like signaling, which contributes to tumor angiogenesis. Furthermore, several studies have demonstrated an immunosuppressive function of Gal1 through effects on both effector and regulatory T cells. Elevated Gal1 expression and secretion have been shown in many tumor types, and high Gal1 serum levels have been connected to poor prognosis in cancer patients. These findings suggest that therapeutic strategies directed against Gal1 would enable simultaneous targeting of angiogenesis, immune evasion and metastasis. In the current study, we have analyzed the potential of Gal1 as a cancer vaccine target. We show that it is possible to generate high anti-Gal1 antibody levels in mice immunized with a recombinant vaccine protein consisting of bacterial sequences fused to Gal1. Growth of Gal1 expressing melanomas was significantly impaired in the immunized mice compared to the control group. This was associated with improved perfusion of the tumor vasculature, as well as increased infiltration of macrophages and cytotoxic T cells (CTLs). The level of granzyme B, mainly originating from CTLs in our model, was significantly elevated in Gal1 vaccinated mice and correlated with a decrease in tumor burden. We conclude that vaccination against Gal1 is a promising pro-immunogenic approach for cancer therapy that could potentially enhance the effect of other immunotherapeutic strategies due to its ability to promote CTL influx in tumors.


Assuntos
Vacinas Anticâncer , Galectina 1 , Melanoma , Carga Tumoral , Animais , Vacinas Anticâncer/imunologia , Galectina 1/metabolismo , Melanoma/terapia , Camundongos , Neovascularização Patológica , Linfócitos T Citotóxicos/metabolismo , Vacinação
12.
Neuro Oncol ; 24(3): 398-411, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-34347079

RESUMO

BACKGROUND: Tumor vessels in glioma are molecularly and functionally abnormal, contributing to treatment resistance. Proteins differentially expressed in glioma vessels can change vessel phenotype and be targeted for therapy. ELTD1 (Adgrl4) is an orphan member of the adhesion G-protein-coupled receptor family upregulated in glioma vessels and has been suggested as a potential therapeutic target. However, the role of ELTD1 in regulating vessel function in glioblastoma is poorly understood. METHODS: ELTD1 expression in human gliomas and its association with patient survival was determined using tissue microarrays and public databases. The role of ELTD1 in regulating tumor vessel phenotype was analyzed using orthotopic glioma models and ELTD1-/- mice. Endothelial cells isolated from murine gliomas were transcriptionally profiled to determine differentially expressed genes and pathways. The consequence of ELTD1 deletion on glioma immunity was determined by treating tumor-bearing mice with PD-1-blocking antibodies. RESULTS: ELTD1 levels were upregulated in human glioma vessels, increased with tumor malignancy, and were associated with poor patient survival. Progression of orthotopic gliomas was not affected by ELTD1 deletion, however, tumor vascular function was improved in ELTD1-/- mice. Bioinformatic analysis of differentially expressed genes indicated increased inflammatory response and decreased proliferation in tumor endothelium in ELTD1-/- mice. Consistent with an enhanced inflammatory response, ELTD1 deletion improved T-cell infiltration in GL261-bearing mice after PD-1 checkpoint blockade. CONCLUSION: Our data demonstrate that ELTD1 participates in inducing vascular dysfunction in glioma, and suggest that targeting of ELTD1 may normalize the vessels and improve the response to immunotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Receptores Acoplados a Proteínas G/genética , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Deleção de Genes , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Camundongos , Camundongos Knockout , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/metabolismo
13.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830297

RESUMO

During angiogenesis, cell adhesion molecules expressed on the endothelial cell surface promote the growth and survival of newly forming vessels. Hence, elucidation of the signaling pathways activated by cell-to-matrix adhesion may assist in the discovery of new targets to be used in antiangiogenic therapy. In proliferating endothelial cells, the single-pass transmembrane glycoprotein CD93 has recently emerged as an important endothelial cell adhesion molecule regulating vascular maturation. In this study, we unveil a signaling pathway triggered by CD93 that regulates actin cytoskeletal dynamics responsible of endothelial cell adhesion. We show that the Src-dependent phosphorylation of CD93 and the adaptor protein Cbl leads to the recruitment of Crk, which works as a downstream integrator in the CD93-mediated signaling. Moreover, confocal microscopy analysis of FRET-based biosensors shows that CD93 drives the coordinated activation of Rac1 and RhoA at the cell edge of spreading cells, thus promoting the establishment of cell polarity and adhesion required for cell motility.


Assuntos
Citoesqueleto de Actina/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Transdução de Sinais/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Polaridade Celular/genética , Células Cultivadas , Humanos , Glicoproteínas de Membrana/genética , Fosforilação/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Interferência de RNA , Receptores de Complemento/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
14.
Front Immunol ; 12: 724739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539661

RESUMO

Glioblastoma is the most common and aggressive brain tumor, which is uniformly lethal due to its extreme invasiveness and the absence of curative therapies. Immune checkpoint inhibitors have not yet proven efficacious for glioblastoma patients, due in part to the low prevalence of tumor-reactive T cells within the tumor microenvironment. The priming of tumor antigen-directed T cells in the cervical lymph nodes is complicated by the shortage of dendritic cells and lack of appropriate lymphatic vessels within the brain parenchyma. However, recent data suggest that naive T cells may also be primed within brain tumor-associated tertiary lymphoid structures. Here, we review the current understanding of the formation of these structures within the central nervous system, and hypothesize that promotion of tertiary lymphoid structures could enhance priming of tumor antigen-targeted T cells and sensitize glioblastomas to cancer immunotherapy.


Assuntos
Neoplasias Encefálicas/imunologia , Sistema Nervoso Central/imunologia , Glioblastoma/imunologia , Linfócitos T/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Sistema Nervoso Central/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Imunoterapia , Estruturas Linfoides Terciárias/patologia , Microambiente Tumoral
15.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34228647

RESUMO

Passage of systemically delivered pharmacological agents into the brain is largely blocked by the blood-brain-barrier (BBB), an organotypic specialization of brain endothelial cells (ECs). Tumor vessels in glioblastoma (GBM), the most common malignant brain tumor in humans, are abnormally permeable, but this phenotype is heterogeneous and may differ between the tumor's center and invasive front. Here, through single-cell RNA sequencing (scRNA-seq) of freshly isolated ECs from human glioblastoma and paired tumor peripheral tissues, we have constructed a molecular atlas of human brain ECs providing unprecedented molecular insight into the heterogeneity of the human BBB and its molecular alteration in glioblastoma. We identified 5 distinct EC phenotypes representing different states of EC activation and BBB impairment, and associated with different anatomical locations within and around the tumor. This unique data resource provides key information for designing rational therapeutic regimens and optimizing drug delivery.


Assuntos
Transporte Biológico/genética , Barreira Hematoencefálica , Neoplasias Encefálicas , Proteínas de Transporte/genética , Permeabilidade da Membrana Celular/genética , Células Endoteliais , Glioblastoma , Variação Biológica da População , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
16.
Nat Commun ; 12(1): 4127, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226552

RESUMO

Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response.


Assuntos
Antígenos CD40/imunologia , Glioma/tratamento farmacológico , Estruturas Linfoides Terciárias/imunologia , Animais , Antineoplásicos/farmacologia , Linfócitos B/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Antígeno CD11b , Linhagem Celular Tumoral , Citocinas , Feminino , Expressão Gênica , Glioma/patologia , Humanos , Imunoglobulina G/genética , Imunoterapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides , Fenótipo , Linfócitos T , Microambiente Tumoral/imunologia
17.
Sci Transl Med ; 13(604)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321321

RESUMO

The immature and dysfunctional vascular network within solid tumors poses a substantial obstacle to immunotherapy because it creates a hypoxic tumor microenvironment that actively limits immune cell infiltration. The molecular basis underpinning this vascular dysfunction is not fully understood. Using genome-scale receptor array technology, we showed here that insulin-like growth factor binding protein 7 (IGFBP7) interacts with its receptor CD93, and we subsequently demonstrated that this interaction contributes to abnormal tumor vasculature. Both CD93 and IGFBP7 were up-regulated in tumor-associated endothelial cells. IGFBP7 interacted with CD93 via a domain different from multimerin-2, the known ligand for CD93. In two mouse tumor models, blockade of the CD93/IGFBP7 interaction by monoclonal antibodies promoted vascular maturation to reduce leakage, leading to reduced tumor hypoxia and increased tumor perfusion. CD93 blockade in mice increased drug delivery, resulting in an improved antitumor response to gemcitabine or fluorouracil. Blockade of the CD93 pathway triggered a substantial increase in intratumoral effector T cells, thereby sensitizing mouse tumors to immune checkpoint therapy. Last, analysis of samples from patients with cancer under anti-programmed death 1/programmed death-ligand 1 treatment revealed that overexpression of the IGFBP7/CD93 pathway was associated with poor response to therapy. Thus, our study identified a molecular interaction involved in tumor vascular dysfunction and revealed an approach to promote a favorable tumor microenvironment for therapeutic intervention.


Assuntos
Neoplasias , Preparações Farmacêuticas , Animais , Células Endoteliais , Humanos , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
18.
Cancers (Basel) ; 13(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807423

RESUMO

BACKGROUND: Biological causes of sex disparity seen in the prevalence of cancer, including glioblastoma (GBM), remain poorly understood. One of the considered aspects is the involvement of the sex chromosomes, especially loss of chromosome Y (LOY). METHODS: Tumors from 105 isocitrate dehydrogenase (IDH) wild type male GBM patients were tested with droplet digital PCR for copy number changes of ten genes on chromosome Y. Decreased gene expression, a proxy of gene loss, was then analyzed in 225 IDH wild type GBM derived from TCGA and overall survival in both cohorts was tested with Kaplan-Meier log-rank analysis and maximally selected rank statistics for cut-off determination. RESULTS: LOY was associated with significantly shorter overall survival (7 vs. 14.6 months, p = 0.0016), and among investigated individual genes survival correlated most prominently with loss of the sex-determining region Y gene (SRY) (10.8 vs. 14.8 months, p = 0.0031). Gene set enrichment analysis revealed that epidermal growth factor receptor, platelet-derived growth factor receptor, and MYC proto-oncogene signaling pathways are associated with low SRY expression. CONCLUSION: Our data show that deletions and reduced gene expression of chromosome Y genes, especially SRY, are associated with reduced survival of male GBM patients and connected to major susceptibility pathways of gliomagenesis.

19.
Mol Ther Oncolytics ; 21: 37-46, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33869741

RESUMO

Oncolytic virotherapy holds promise of effective immunotherapy against otherwise nonresponsive cancers such as glioblastoma. Our previous findings have shown that although oncolytic Semliki Forest virus (SFV) is effective against various mouse glioblastoma models, its therapeutic potency is hampered by type I interferon (IFN-I)-mediated antiviral signaling. In this study, we constructed a novel IFN-I-resistant SFV construct, SFV-AM6, and evaluated its therapeutic potency in vitro, ex vivo, and in vivo in the IFN-I competent mouse GL261 glioma model. In vitro analysis shows that SFV-AM6 causes immunogenic apoptosis in GL261 cells despite high IFN-I signaling. MicroRNA-124 de-targeted SFV-AM6-124T selectively replicates in glioma cells, and it can infect orthotopic GL261 gliomas when administered intraperitoneally. The combination of SFV-AM6-124T and anti-programmed death 1 (PD1) immunotherapy resulted in increased immune cell infiltration in GL261 gliomas, including an increased tumor-reactive CD8+ fraction. Our results show that SFV-AM6-124T can overcome hurdles of innate anti-viral signaling. Combination therapy with SFV-AM6-124T and anti-PD1 promotes the inflammatory response and improves the immune microenvironment in the GL261 glioma model.

20.
Cell Oncol (Dordr) ; 44(1): 193-204, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32915415

RESUMO

BACKGROUND: Tumor-associated macrophages (TAM)s are critical regulators of glioma progression. As yet, however, TAMs in isocitrate dehydrogenase (IDH) mutated lower-grade gliomas (LGGs) have not been thoroughly investigated. The aim of this study was to determine whether 1p/19q co-deletion status affects the TAM phenotype or its prevalence in IDH mutated LGGs. METHODS: TAMs in IDH mutated LGGs were analyzed using transcriptome data from 230 samples in the TCGA database in combination with transcriptome data from single-cell RNA sequencing of IDH-mutated LGGs. Proteins potentially involved in TAM regulation were examined by immuno-staining in primary LGG samples harboring IDH mutations. Essential signaling pathways regulating TAM phenotypes were investigated in a glioma mouse model using small molecule inhibitors. RESULTS: Most of the TAMs in IDH-mutated LGGs expressed the M1 activation markers CD86 and TNF, whereas a subset of individual TAMs co-expressed both M1 and M2-related markers. Bioinformatics analysis in combination with immuno-staining of IDH-mutated patient samples revealed higher amounts of TAMs expressing M2-related markers in 1p/19q non-codeletion IDH-mutated LGGs compared to 1p/19q codeletion LGGs. The levels of transforming growth factor beta 1 (TGFß1) and macrophage colony-stimulating factor (M-CSF) were significantly higher in 1p/19q non-codeletion LGGs than in 1p/19q codeletion LGGs. M-CSF and TGFß1 signal inhibition decreased tumor growth and modulated the TAM phenotype in a glioma mouse model. CONCLUSIONS: Our data indicate that 1p/19q co-deletion status relates to distinct TAM infiltration in gliomas, which is likely mediated by M-CSF and TGFß1 signaling. M-CSF and TGFß1 signaling may play a pivotal role in regulating the TAM phenotype in glioma.


Assuntos
Neoplasias Encefálicas/genética , Deleção Cromossômica , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 1/genética , Glioma/genética , Isocitrato Desidrogenase/genética , Mutação/genética , Macrófagos Associados a Tumor/patologia , Animais , Neoplasias Encefálicas/patologia , Progressão da Doença , Feminino , Glioma/patologia , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/patologia , Gradação de Tumores , Fenótipo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Células THP-1 , Fator de Crescimento Transformador beta1/metabolismo , Macrófagos Associados a Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA