Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Hered Cancer Clin Pract ; 21(1): 13, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452354

RESUMO

BACKGROUND: Synchronous endometrial and ovarian cancer (SEOC) accounts for 50-70% of all synchronous gynecology cancers in women. Approximately 14% of SEOC cases are caused by Lynch syndrome (LS). The widespread introduction of "universal screening" at LS (all cases with CRC and all EC cases diagnosed before age 60 should be tested for MMR deficiency) has led to an increasing number of suspected LS cases- MMR-deficient tumors without germline mutation in the MMR genes. These cases are attributed to the so-called Lynch-like syndrome (LLS). CASE PRESENTATION: We present a case of LLS with a detected germline, likely pathogenic variant in the WRN gene. The proband was a woman diagnosed with SEOC at the age of 51 years. Histology of both tumors (endometrium and ovary) was endometroid and showed loss of MLH1 and PMS protein expression. Genetic testing by next generation sequencing (NGS) detected a germline mutation (in the heterozygous state) in the WRN gene - c.4109del, p.(Asn1370ThrfsTer23) in the proband. CONCLUSIONS: The presented case contributes to the etiology of LLS and confirms the need for specific genetic testing, together with genetic counseling, in hereditary cancer syndromes. The use of combined information from clinicians, pathologists, genetic counselors, and data from NGS testing for cancer predisposition, clinical surveillance, and follow-up management in women with gynecology cancers, especially SEOC, could be improved.

2.
Front Oncol ; 13: 999738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816923

RESUMO

Introduction: Current cancer research has led to a renewed interest in exploring lysosomal membrane permeabilization and lysosomal cell death as a targeted therapeutic approach for cancer treatment. Evidence suggests that differences in lysosomal biogenesis between cancer and normal cells might open a therapeutic window. Lysosomal membrane stability may be affected by the so-called 'busy lysosomal behaviour' characterized by higher lysosomal abundance and activity and more intensive fusion or interaction with other vacuole compartments. Methods: We used a panel of multiple myeloid leukemia (ML) cell lines as well as leukemic patient samples and updated methodology to study auto-lysosomal compartment, lysosomal membrane permeabilization and lysosomal cell death. Results: Our analyses demonstrated several-fold higher constitutive autolysosomal activity in ML cells as compared to human CD34+ hematopoietic cells. Importantly, we identified mefloquine as a selective activator of ML cells' lysosomal biogenesis, which induced a sizeable increase in ML lysosomal mass, acidity as well as cathepsin B and L activity. Concomitant mTOR inhibition synergistically increased lysosomal activity and autolysosomal fusion and simultaneously decreased the levels of key lysosomal stabilizing proteins, such as LAMP-1 and 2. Discussion: In conclusion, mefloquine treatment combined with mTOR inhibition synergistically induced targeted ML cell death without additional toxicity. Taken together, these data provide a molecular mechanism and thus a rationale for a therapeutic approach for specific targeting of ML lysosomes.

3.
Pflugers Arch ; 475(3): 405-416, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522586

RESUMO

The microenvironment of proliferative and aggressive tumours, such as the brain tumour glioblastoma multiforme (GBM), is often acidic, hypoxic, and nutrient deficient. Acid-sensing ion channels (ASICs) are proton-sensitive Na+ channels that have been proposed to play a role in pH sensing and in modulation of cancer cell migration. We previously reported that primary glioblastoma stem cells (GSCs), which grow as multicellular tumour spheroids, express functional ASIC1a and ASIC3, whereas ASIC2a is downregulated in GSCs. Using a 2.5D migration assay, here we report that acidic pH dramatically increased migration of GSCs of the pro-neural subtype. Pharmacological blockade as well as CRISPR-Cas9-mediated gene knock-out of ASIC1a or stable overexpression of ASIC2a, however, revealed that neither ASIC1a nor ASIC3, nor downregulation of ASIC2a, mediated the aggressive migration at acidic pH. Therefore, we tested the role of two other proteins previously implicated in cancer cell migration: the Ca2+-activated K+ channel KCa3.1 (KCNN4) and phosphoinositide 3-kinase (PI3K). While pharmacological blockade of KCa3.1 did also not affect migration, blockade of PI3K decreased migration at acidic pH to control levels. In summary, our study reveals a strongly enhanced migration of GSCs at acidic pH in vitro and identifies PI3K as an important mediator of this effect.


Assuntos
Glioblastoma , Humanos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Concentração de Íons de Hidrogênio , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Microambiente Tumoral , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo
4.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830347

RESUMO

TNF is a proinflammatory cytokine that is critical for the coordination of tissue homeostasis. RIPK1 and TRADD are the main participants in the transduction of TNF signaling. However, data on the cell fate-controlling functions of both molecules are quite controversial. Here, we address the functions of RIPK1 and TRADD in TNF signaling by generating RIPK1- or TRADD-deficient human cell lines. We demonstrate that RIPK1 is relevant for TNF-induced apoptosis and necroptosis in conditions with depleted IAPs. In addition, TRADD is dispensable for necroptosis but required for apoptosis. We reveal a new possible function of TRADD as a negative regulator of NIK stabilization and subsequent ripoptosome formation. Furthermore, we show that RIPK1 and TRADD do not appear to be essential for the activation of MAPK signaling. Moreover, partially repressing NF-κB activation in both RIPK1 and TRADD KO cells does not result in sensitization to TNF alone due to the absence of NIK stabilization. Importantly, we demonstrate that RIPK1 is essential for preventing TRADD from undergoing TNF-induced ubiquitination and degradation. Taken together, our findings provide further insights into the specific functions of RIPK1 and TRADD in the regulation of TNF-dependent signaling, which controls the balance between cell death and survival.


Assuntos
Apoptose/genética , Necroptose/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína de Domínio de Morte Associada a Receptor de TNF/genética , Fator de Necrose Tumoral alfa/metabolismo , Apoptose/efeitos dos fármacos , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Sistemas CRISPR-Cas , Cicloeximida/farmacologia , Deleção de Genes , Regulação da Expressão Gênica , Células HeLa , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Necroptose/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Transdução de Sinais , Proteína de Domínio de Morte Associada a Receptor de TNF/deficiência , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitinação
5.
Probl Endokrinol (Mosk) ; 66(2): 4-12, 2020 08 30.
Artigo em Russo | MEDLINE | ID: mdl-33351343

RESUMO

Changes in the expression of non-coding ribonucleic acids (ncRNAs) take part in the formation of various tumors. Multiple endocrine neoplasia syndrome type 1 (MEN1) is a rare autosomal dominant disease caused by mutations of the MEN1 gene encoding the menin protein. This syndrome is characterized by the occurrence of parathyroid tumors, gastroenteropancreatic neuroendocrine tumors, pituitary adenomas, as well as other endocrine and non-endocrine tumors. The pathogenesis of MEN-1 associated tumors due to MEN1 mutations remains unclear. In the absence of mutations of the MEN1 gene in patients with phenotypically similar features, this condition is regarded as a phenocopy of this syndrome. The cause of the combination of several MEN-1-related tumors in these patients remains unknown. The possible cause is that changes in the expression of ncRNAs affect the regulation of signaling pathways in which menin participates and may contribute to the development of MEN-1-related tumors. The identification of even a small number of agents interacting with menin makes a significant contribution to the improvement of knowledge about its pathophysiological influence and ways of developing tumors within the MEN-1 syndrome and its phenocopies.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Neoplasias das Paratireoides , Neoplasias Hipofisárias , Humanos , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasias Pancreáticas/genética , Neoplasias das Paratireoides/genética , Neoplasias Hipofisárias/genética
6.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238518

RESUMO

cFLIP is required for epidermal integrity and skin inflammation silencing via protection from TNF-induced keratinocyte apoptosis. Here, we generated and analyzed cFLIP epidermal KO mice with additional TNF deficiency. Intriguingly, the ablation of TNF rescued the pathological phenotype of epidermal cFLIP KO from characteristic weight loss and increased mortality. Moreover, the lack of TNF in these animals strongly reduced and delayed the epidermal hyperkeratosis and the increased apoptosis in keratinocytes. Our data demonstrate that TNF signaling in cFLIP-deficient keratinocytes is the critical factor for the regulation of skin inflammation via modulated cytokine and chemokine expression and, thus, the attraction of immune cells. Our data suggest that autocrine TNF loop activation upon cFLIP deletion is dispensable for T cells, but is critical for neutrophil attraction. Our findings provide evidence for a negative regulatory role of cFLIP for TNF-dependent apoptosis and partially for epidermal inflammation. However, alternative signaling pathways may contribute to the development of the dramatic skin disease upon cFLIP deletion. Our data warrant future studies of the regulatory mechanism controlling the development of skin disease upon cFLIP deficiency and the role of cFLIP/TNF in a number of inflammatory skin diseases, including toxic epidermal necrolysis (TEN).


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Hiperceratose Epidermolítica/genética , Inflamação/genética , Fator de Necrose Tumoral alfa/genética , Animais , Apoptose/genética , Caspase 8/genética , Dermatite/genética , Dermatite/metabolismo , Dermatite/patologia , Humanos , Hiperceratose Epidermolítica/metabolismo , Hiperceratose Epidermolítica/patologia , Inflamação/metabolismo , Inflamação/patologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Pele/metabolismo , Pele/patologia
7.
Amyloid ; 27(4): 250-253, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32578459

RESUMO

OBJECTIVE: Patients with hereditary transthyretin (TTR) amyloidosis (hATTR) often experience disease progression after orthotopic liver transplant (POLT) due in part to wild type ATTR amyloid deposition. The management strategy is not defined. We propose that TTR gene silencing with an antisense oligonucleotide or a small interfering ribonucleic acid may be a treatment for these patients. METHODS: We reviewed the charts of hATTR patients POLT treated with a TTR gene silencing agent at 7 different Amyloid Clinics between 2018-2020. RESULTS: Nine hATTR patients with POLT were treated with TTR gene silencing therapy (Inotersen). The median age was 61 years. The median time from OLT to initiation of TTR gene silencing therapy was 7.5 years. The median duration of therapy was 12 months. Neuropathy impairment score remained stable or improved in all patients. Five patients stopped treatment: 3 because of thrombocytopenia, 2 because of reversible liver rejection. Three patients who discontinued treatment subsequently experienced worsening of their neuropathy. CONCLUSION: TTR gene silencing therapy in hATTR patients with POLT could be a treatment option. Vigilant monitoring of renal, liver and bone marrow functions is necessary because of frequent complications. Further studies are needed to determine efficacy.


Assuntos
Neuropatias Amiloides Familiares/terapia , Inativação Gênica/efeitos dos fármacos , Transplante de Fígado , Oligonucleotídeos/administração & dosagem , Pré-Albumina/genética , Adulto , Idoso , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos Antissenso/administração & dosagem , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/metabolismo , Resultado do Tratamento
8.
Cells ; 9(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028675

RESUMO

The ubiquitin-editing protein A20 (TNFAIP3) is a known key player in the regulation of immune responses in many organs. Genome-wide associated studies (GWASs) have linked A20 with a number of inflammatory and autoimmune disorders, including psoriasis. Here, we identified a previously unrecognized role of A20 as a pro-apoptotic factor in TNF-induced cell death in keratinocytes. This function of A20 is mediated via the NF-κB-dependent alteration of cIAP1/2 expression. The changes in cIAP1/2 protein levels promote NIK stabilization and subsequent activation of noncanonical NF-κB signaling. Upregulation of TRAF1 expression triggered by the noncanonical NF-κB signaling further enhances the NIK stabilization in an autocrine manner. Finally, stabilized NIK promotes the formation of the ripoptosome and the execution of cell death. Thus, our data demonstrate that A20 controls the execution of TNF-induced cell death on multiple levels in keratinocytes. This signaling mechanism might have important implications for the development of new therapeutic strategies for the treatment of A20-associated skin diseases.


Assuntos
Apoptose , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Queratinócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células HaCaT , Células HeLa , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Modelos Biológicos , NF-kappa B/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/deficiência , Quinase Induzida por NF-kappaB
10.
Neurol Clin Pract ; 9(4): 309-313, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31583185

RESUMO

BACKGROUND: Hereditary transthyretin amyloidosis (hATTR) is associated with significant morbidity and mortality. Early diagnosis and treatment are essential to improve patient's outcome. Carpal tunnel syndrome (CTS) is a common complication of hATTR amyloidosis. However, because CTS is also common in the general population, we wanted to assess whether CTS, when associated with systemic manifestations, could help direct physicians to screen for TTR gene mutation and early diagnosis. METHODS: We reviewed the charts and interviewed the patients with hATTR seen between 2017 and 2018. We noted the details of CTS diagnosis, treatment, and other systemic features of the disease. RESULTS: Seventeen of the 23 patients studied had CTS. CTS was the first manifestation of the disease in 10 of 17 patients. On average, CTS symptoms occurred 10.4 years before their diagnosis of hATTR amyloidosis. In 6 of 10 patients with CTS, the following systemic symptoms were present as the first manifestation: erectile dysfunction, dysautonomia, polyneuropathy, exercise intolerance, and gastrointestinal and ocular symptoms. CONCLUSION: CTS occurs in most patients with hATTR amyloidosis and frequently precedes the hATTR diagnosis. Most patients with CTS preceding hATTR diagnosis have systemic features. Recognizing systemic features at the time of CTS presentation may help in early diagnosis of hATTR amyloidosis.

11.
Cell Death Differ ; 26(12): 2520-2534, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30850732

RESUMO

Melanoma cells are highly resistant to conventional genotoxic agents, and BRAFV600/MEK-targeted therapies as well as immunotherapies frequently remain inefficient. Alternative means to treat melanoma, in particular through the induction of programmed cell death modalities such as apoptosis or necroptosis, therefore still need to be explored. Here, we report that melanoma cell lines expressing notable amounts of RIPK1, RIPK3 and MLKL, the key players of necroptosis signal transduction, fail to execute necroptotic cell death. Interestingly, the activity of transforming growth factor ß-activated kinase 1 (TAK1) appears to prevent RIPK1 from contributing to cell death induction, since TAK1 inhibition by (5Z)-7-Oxozeaenol, deletion of MAP3K7 or the expression of inactive TAK1 were sufficient to sensitize melanoma cells to RIPK1-dependent cell death in response to TNFα or TRAIL based combination treatments. However, cell death was executed exclusively by apoptosis, even when RIPK3 expression was high. In addition, TAK1 inhibitor (5Z)-7-Oxozeaenol suppressed intrinsic or treatment-induced pro-survival signaling as well as the secretion of cytokines and soluble factors associated with melanoma disease progression. Correspondingly, elevated expression of TAK1 correlates with reduced disease free survival in patients diagnosed with primary melanoma. Overall, our results therefore demonstrate that TAK1 suppresses the susceptibility to RIPK1-dependent cell death and that high expression of TAK1 indicates an increased risk for disease progression in melanoma.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Melanoma/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Decitabina/farmacologia , Progressão da Doença , Humanos , MAP Quinase Quinase Quinases/biossíntese , MAP Quinase Quinase Quinases/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Transfecção , Zearalenona/análogos & derivados , Zearalenona/farmacologia
13.
Exp Dermatol ; 26(10): 854-857, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28155250

RESUMO

In the last decade, significant progress has been made in understanding skin cancer cell death resistance mechanisms, and a number of new treatment strategies have been developed. Systematic approach genomic studies of various cancer types have opened new possibilities for the development of anticancer therapies. However, there are still fundamental gaps in the challenging biomedical puzzle, which will form a complete picture for curing cancer. Thus, herein, we describe some of the current cancer treatment strategies and discuss additional cell signalling pathways that could be potential targets for skin cancer treatment.


Assuntos
Morte Celular , Proliferação de Células , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/antagonistas & inibidores , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/uso terapêutico , Sistema de Sinalização das MAP Quinases , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Neoplasias Cutâneas/fisiopatologia
14.
Cancer Cell ; 31(1): 94-109, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28017612

RESUMO

Receptor-interacting protein kinase 1 (RIPK1) represents an essential signaling node in cell death and inflammation. Ablation of Ripk1 in liver parenchymal cells (LPC) did not cause a spontaneous phenotype, but led to tumor necrosis factor (TNF)-dependent hepatocyte apoptosis and liver injury without affecting inducible nuclear factor κB (NF-κB) activation. Loss of Ripk1 induced the TNF-dependent proteasomal degradation of the E3-ligase, TNF receptor-associated factor 2 (TRAF2), in a kinase-independent manner, thereby activating caspase-8. Moreover, loss of both Ripk1 and Traf2 in LPC not only resulted in caspase-8 hyperactivation but also impaired NF-κB activation, promoting the spontaneous development of hepatocellular carcinoma. In line, low RIPK1 and TRAF2 expression in human HCCs was associated with an unfavorable prognosis, suggesting that RIPK1 collaborates with TRAF2 to inhibit murine and human hepatocarcinogenesis.


Assuntos
Neoplasias Hepáticas/etiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Fator 2 Associado a Receptor de TNF/fisiologia , Animais , Caspase 8/metabolismo , Hepatócitos/fisiologia , Humanos , Neoplasias Hepáticas/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
15.
PLoS One ; 9(5): e95970, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24816744

RESUMO

Salinomycin raised hope to be effective in anti-cancer therapies due to its capability to overcome apoptosis-resistance in several types of cancer cells. Recently, its effectiveness against human hepatocellular carcinoma (HCC) cells both in vitro and in vivo was demonstrated. However, the mechanism of action remained unclear. Latest studies implicated interference with the degradation pathway of autophagy. This study aimed to determine the impact of Salinomycin on HCC-autophagy and whether primary human hepatocytes (PHH) likewise are affected. Following exposure of HCC cell lines HepG2 and Huh7 to varying concentrations of Salinomycin (0-10 µM), comprehensive analysis of autophagic activity using western-blotting and flow-cytometry was performed. Drug effects were analyzed in the settings of autophagy stimulation by starvation or PP242-treatment and correlated with cell viability, proliferation, apoptosis induction, mitochondrial mass accumulation and reactive oxygen species (ROS) formation. Impact on apoptosis induction and cell function of PHH was analyzed. Constitutive and stimulated autophagic activities both were effectively suppressed in HCC by Salinomycin. This inhibition was associated with dysfunctional mitochondria accumulation, increased apoptosis and decreased proliferation and cell viability. Effects of Salinomycin were dose and time dependent and could readily be replicated by pharmacological and genetic inhibition of HCC-autophagy alone. Salinomycin exposure to PHH resulted in transient impairment of synthesis function and cell viability without apoptosis induction. In conclusion, our data suggest that Salinomycin suppresses late stages of HCC-autophagy, leading to impaired recycling and accumulation of dysfunctional mitochondria with increased ROS-production all of which are associated with induction of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Piranos/farmacologia , Antineoplásicos/farmacologia , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Coccidiostáticos/farmacologia , Relação Dose-Resposta a Droga , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Enzimas Ativadoras de Ubiquitina/genética
16.
DNA Repair (Amst) ; 21: 131-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24819595

RESUMO

Genotoxins and other factors cause replication stress that activate the DNA damage response (DDR), comprising checkpoint and repair systems. The DDR suppresses cancer by promoting genome stability, and it regulates tumor resistance to chemo- and radiotherapy. Three members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, ATM, ATR, and DNA-PK, are important DDR proteins. A key PIKK target is replication protein A (RPA), which binds single-stranded DNA and functions in DNA replication, DNA repair, and checkpoint signaling. An early response to replication stress is ATR activation, which occurs when RPA accumulates on ssDNA. Activated ATR phosphorylates many targets, including the RPA32 subunit of RPA, leading to Chk1 activation and replication arrest. DNA-PK also phosphorylates RPA32 in response to replication stress, and we demonstrate that cells with DNA-PK defects, or lacking RPA32 Ser4/Ser8 targeted by DNA-PK, confer similar phenotypes, including defective replication checkpoint arrest, hyper-recombination, premature replication fork restart, failure to block late origin firing, and increased mitotic catastrophe. We present evidence that hyper-recombination in these mutants is ATM-dependent, but the other defects are ATM-independent. These results indicate that DNA-PK and ATR signaling through RPA32 plays a critical role in promoting genome stability and cell survival in response to replication stress.


Assuntos
Replicação do DNA , Proteína Quinase Ativada por DNA/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Recombinação Homóloga , Proteínas Nucleares/metabolismo , Proteína de Replicação A/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células CHO , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Cricetinae , Cricetulus , Proteína Quinase Ativada por DNA/genética , Humanos , Mutação , Proteínas Nucleares/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína de Replicação A/genética , Serina/genética , Serina/metabolismo
17.
Cell Rep ; 5(2): 397-408, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24209745

RESUMO

FADD, caspase-8, and cFLIP regulate the outcome of cell death signaling. Mice that constitutively lack these molecules die at an early embryonic age, whereas tissue-specific constitutive deletion of FADD or caspase-8 results in inflammatory skin disease caused by increased necroptosis. The function of cFLIP in the skin in vivo is unknown. In contrast to tissue-specific caspase-8 knockout, we show that mice constitutively lacking cFLIP in the epidermis die around embryonic days 10 and 11. When cFLIP expression was abrogated in adult skin of cFLIPfl/fl-K14CreERtam mice, severe inflammation of the skin with concomitant caspase activation and apoptotic, but not necroptotic, cell death developed. Apoptosis was dependent of autocrine tumor necrosis factor production triggered by loss of cFLIP. In addition, epidermal cFLIP protein was lost in patients with severe drug reactions associated with epidermal apoptosis. Our data demonstrate the importance of cFLIP for the integrity of the epidermis and for silencing of spontaneous skin inflammation.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Queratinócitos/metabolismo , Pele/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/deficiência , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Caspase 8/genética , Caspase 8/metabolismo , Células Cultivadas , Homeostase , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pele/patologia
18.
AIDS ; 26(16): 1995-2006, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22914580

RESUMO

OBJECTIVES: Prolonged nucleoside reverse transcriptase inhibitors (NRTI) exposure can lead to microvesicular steatosis. We hypothesized that thymidine analogues might interfere with autophagy in hepatocytes, a lysosomal degradation pathway implicated in cell survival and regulation of hepatocyte lipid metabolism. DESIGN: Using HepG2 and HUH7 cell lines and primary human hepatocytes, we performed a comprehensive analysis of NRTI-mediated effects on autophagy. METHODS: The impact of zidovudine (ZDV), stavudine (d4T) and lamivudine (3TC) on constitutive and induced autophagy was analyzed by fluorescent and electron microscopy, western blotting and flow cytometry. Effects on hepatocyte autophagy were correlated to cellular viability, mitochondrial dysfunction and intracellular lipid accumulation. RESULTS: ZDV and d4T, but not 3TC, significantly inhibited both constitutive as well as stimulated autophagic activity in a dose-dependent and time-dependent manner. Inhibition of autophagy at therapeutic drug concentrations led to accumulation of dysfunctional mitochondria, increased ROS production, increased apoptosis, decreased proliferation and increased intracellular lipid accumulation. These NRTI effects could be readily resembled by pharmacological and genetic inhibition of hepatocyte autophagy. CONCLUSION: Our data suggest that thymidine analogues inhibit autophagy in hepatocytes, which in turn leads to increased ROS production, lipid accumulation and hepatic dysfunction. This novel mechanism could contribute to nonalcoholic fatty liver disease in HIV-infected patients.


Assuntos
Fármacos Anti-HIV/farmacologia , Autofagia/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Fígado Gorduroso/metabolismo , Infecções por HIV/metabolismo , Células Hep G2/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Timidina/análogos & derivados , Timidina/farmacologia , Western Blotting , Células Cultivadas , DNA Mitocondrial/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Feminino , Citometria de Fluxo , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Células Hep G2/efeitos dos fármacos , Humanos , Masculino , Microscopia Eletrônica , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica , Estavudina/farmacologia , Zidovudina/farmacologia
19.
Cell Cycle ; 11(3): 460-7, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22274400

RESUMO

At an unbelievable pace, recent evidence has emerged that demonstrates the importance of a programmed form of necrosis (necroptosis) in physiology, pathophysiology and embryonic development. It is clear that the understanding of the intracellular control of necroptosis as compared to caspase-dependent apoptosis is of paramount importance. Tumorigenesis, immune surveillance of cancer and pathogen-induced disease, to name only a few, appear to be affected by the mode of cell death in vivo. Here, we discuss the Ripoptosome, a newly defined 2 MDa intracellular signalling complex that can be formed upon genotoxic stress or loss of inhibitor-of apoptosis proteins (IAPs). The Ripoptosome is a signaling platform that can switch modes between apoptotic and necroptotic cell death. In this report, we extend our recent studies and further the notion that the stoichiometric balance between RIP1 and cIAPs is critical for Ripoptosome formation. Furthermore, we demonstrate the critical relevance of the balance of expression levels of short (cFLIPS) or viral (vFLIP) forms of FLIP and RIP3 kinase for the spontaneous execution of necroptosis whenever cIAPs are absent in the cells. Our study thus supports and extends the intriguing role of the Ripoptosome for the regulation of apoptosis and necroptosis.


Assuntos
Apoptose/fisiologia , Necrose/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proteína Ligante Fas/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/metabolismo , Necrose/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo
20.
Mol Cell ; 43(3): 449-63, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21737330

RESUMO

The intracellular regulation of cell death pathways by cIAPs has been enigmatic. Here we show that loss of cIAPs promotes the spontaneous formation of an intracellular platform that activates either apoptosis or necroptosis. This 2 MDa intracellular complex that we designate "Ripoptosome" is necessary but not sufficient for cell death. It contains RIP1, FADD, caspase-8, caspase-10, and caspase inhibitor cFLIP isoforms. cFLIP(L) prevents Ripoptosome formation, whereas, intriguingly, cFLIP(S) promotes Ripoptosome assembly. When cIAPs are absent, caspase activity is the "rheostat" that is controlled by cFLIP isoforms in the Ripoptosome and decides if cell death occurs by RIP3-dependent necroptosis or caspase-dependent apoptosis. RIP1 is the core component of the complex. As exemplified by our studies for TLR3 activation, our data argue that the Ripoptosome critically influences the outcome of membrane-bound receptor triggering. The differential quality of cell death mediated by the Ripoptosome may cause important pathophysiological consequences during inflammatory responses.


Assuntos
Apoptose/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/fisiologia , Caspase 8/fisiologia , Proteínas Inibidoras de Apoptose/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Isoformas de Proteínas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA