Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068562

RESUMO

Sideritis scardica Griseb. is a critically endangered Balkan endemic species, known for its antioxidant, neuroprotective and anti-inflammatory properties. The aim of the present study was to detail an efficient protocol for the micropropagation of S. scardica. In vitro cultures were initiated from the shoot tips of 40 days-old in vivo seedlings and the effects of different plant growth regulator treatments were examined. A Murashige and Skoog nutrient medium (MS) containing 1 mg/L zeatin and 0.1 mg/L indole-3-acetic acid (IAA) proved to be the most efficient for shoot multiplication as it produced quality, vigorous shoots with a mean number of six shoots per explant. For the first time, the antioxidant and antitumor activities of extracts from in vitro-obtained plants were evaluated. In vitro cultivated plants grown in the field revealed a higher total polyphenol content (3929.1 ± 112.2 mg GAE/100 g vs. 3563.5 ± 52.8 mg GAE/100 g) and higher ORAC antioxidant activity (1211.6 ± 27.3 µmol TE/g vs. 939.9 ± 52.4 µmol TE/g) than in situ cultivated plants. A comparison of the antitumor activities of extracts from in vitro propagated shoots, field-grown in vitro-obtained plants and in situ plants on HeLa (cervical adenocarcinoma), HT-29 (colorectal adenocarcinoma) and MCF-7 (breast cancer) human cancer cell lines showed that in vitro propagated shoots had a significant concentration-dependent cytotoxic effect on the cervical adenocarcinoma cell line HeLa, while the field-grown in vitro-obtained and in situ-collected samples induced the highest reduction in the viability of the mammary carcinoma cell line MCF-7. In both cases, the cells of the control non-tumor cell line, BALB/3T3, were significantly less affected. The results showed that the in vitro multiplication protocol ensured the obtainment of numerous plants with antioxidant and antitumor potential.

2.
Plants (Basel) ; 12(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37111815

RESUMO

Clinopodium vulgare L. is a valuable medicinal plant used for its anti-inflammatory, antibacterial and wound-healing properties. The present study describes an efficient protocol for the micropropagation of C. vulgare and compares, for the first time, the chemical content and composition and antitumor and antioxidant activities of extracts from in vitro cultivated and wild-growing plants. The best nutrient medium was found to be Murashige and Skoog (MS) supplemented with 1 mg/L BAP and 0.1 IBA mg/L, yielding on average 6.9 shoots per nodal segment. Flower aqueous extracts from in vitro plants had higher total polyphenol content (29,927.6 ± 592.1 mg/100 g vs. 27,292.8 ± 85.3 mg/100 g) and ORAC antioxidant activity (7281.3 ± 82.9 µmol TE/g vs. 7246.3 ± 62.4 µmol TE/g) compared to the flowers of wild plants. HPLC detected qualitative and quantitative differences in phenolic constituents between the in vitro cultivated and wild-growing plants' extracts. Rosmarinic acid was the major phenolic constituent, being accumulated mainly in leaves, while neochlorogenic acid was a major compound in the flowers of cultivated plants. Catechin was found only in cultivated plants, but not in wild plants or cultivated plants' stems. Aqueous extracts of both cultivated and wild plants showed significant in vitro antitumor activity against human HeLa (cervical adenocarcinoma), HT-29 (colorectal adenocarcinoma) and MCF-7 (breast cancer) cell lines. The best cytotoxic activity against most of the cancer cell lines, combined with the least detrimental effects on a non-tumor human keratinocyte cell line (HaCaT), was shown by the leaf (250 µg/mL) and flower (500 µg/mL) extracts of cultivated plants, making cultivated plants a valuable source of bioactive compounds and a suitable candidate for anticancer therapy.

3.
Pharmaceutics ; 14(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36559182

RESUMO

Cutaneous T-cell lymphoma (CTCL) is a rare form of cancer with local as well as systemic manifestations. Concomitant bacterial infections increase morbidity and mortality rates due to impaired skin barrier and immune deficiency. In the current study, we demonstrated that the in vitro anti-lymphoma potential of erufosine is diminished by TWIST1 expression and micellar curcumin substantially increases its antineoplastic activity. Pharmacokinetic analysis showed that the micellar curcumin (MCRM) used in our study was characterized by low zeta potential, slow release of curcumin, and fast cell membrane penetration. The combination ratio 1:4 [erufosine:MCRM] achieved strong synergism by inhibiting cell proliferation and clonogenicity. The combined antiproliferative effects were calculated using the symbolic mathematical software MAPLE 15. The synergistic combination strongly decreased the expression of TWIST1 and protein kinase B/Akt as proven by western blotting. Significant reductions in NF-κB activation, induction of apoptosis, and altered glutathione levels were demonstrated by corresponding assays. In addition, the synergistic combination enhanced the anti-staphylococcal activity and prevented biofilm formation, as shown by crystal violet staining. Taken together, the above results show that the development of nanotechnological treatment modalities for CTCL, based on rational drug combinations exhibiting parallel antineoplastic and antibacterial effects, may prove efficacious.

4.
Plants (Basel) ; 11(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35448801

RESUMO

The wastewater after rose oil distillation is usually discharged into the drainage systems and it represents a serious environmental problem. While being rich in polyphenols, which have beneficial biological activity and application in the pharmaceutical industry, limited research has been carried out about the biological activity of the specific wastewaters per se. Wastewaters after distillation of the four Bulgarian oil-bearing roses Rosa damascena Mill., R. alba L., R. centifolia L., and R. gallica L. exerted significant antioxidant activity and good antiherpes simplex virus type-1 (HSV-1) activity while maintaining a good toxicological safety profile (low cytotoxic effect) towards normal cell lines. More precisely, the non-tumorigenic cells were a human (HEK-293 embryonic kidney cells) and a mouse cell line (CCL-1 fibroblasts, which are recommended as a standard for cytotoxicity evaluation in Annex C of ISO 10993-5). The concentrations that achieved antioxidant and radical scavenging effects (0.04-0.92% v/v) were much lower than most of the maximum tolerated concentrations for the tissue culture cells (0.2-3.4% v/v). The wastewaters had a weak antiproliferative effect against Staphylococcus aureus. None of the wastewaters had activity against Gram-negative bacteria or a bactericidal or antifungal effect. We can conclude that these four species, which are the most preferred species worldwide for producing high-quality rose oil, have the potential to be developed as promising antioxidant and antiherpesvirus nutraceuticals.

5.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834109

RESUMO

Oregano oil (OrO) possesses well-pronounced antimicrobial properties but its application is limited due to low water solubility and possible instability. The aim of this study was to evaluate the possibility to incorporate OrO in an aqueous dispersion of chitosan-alginate nanoparticles and how this will affect its antimicrobial activity. The encapsulation of OrO was performed by emulsification and consequent electrostatic gelation of both polysaccharides. OrO-loaded nanoparticles (OrO-NP) have small size (320 nm) and negative charge (-25 mV). The data from FTIR spectroscopy and XRD analyses reveal successful encapsulation of the oil into the nanoparticles. The results of thermogravimetry suggest improved thermal stability of the encapsulated oil. The minimal inhibitory concentrations of OrO-NP determined on a panel of Gram-positive and Gram-negative pathogens (ISO 20776-1:2006) are 4-32-fold lower than those of OrO. OrO-NP inhibit the respiratory activity of the bacteria (MTT assay) to a lower extent than OrO; however, the minimal bactericidal concentrations still remain significantly lower. OrO-NP exhibit significantly lower in vitro cytotoxicity than pure OrO on the HaCaT cell line as determined by ISO 10993-5:2009. The irritation test (ISO 10993-10) shows no signs of irritation or edema on the application site. In conclusion, the nanodelivery system of oregano oil possesses strong antimicrobial activity and is promising for development of food additives.


Assuntos
Alginatos , Antibacterianos , Quitosana , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Nanopartículas/química , Óleos Voláteis , Origanum/química , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia
6.
Toxics ; 9(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919268

RESUMO

The cytotoxicity and microbicidal capacity of seven organic solvents commonly applied for studying plant extracts and bioactive compounds were systematically investigated based on international standards. Four cell lines of normal (CCL-1, HaCaT) or tumor (A-375, A-431) tissue origin, seven bacterial and one fungal strain were used. The impact of the least toxic solvents in the determination of in vitro cytotoxicity was evaluated using a standardized extract from Vaccinium macrocarpon containing 54.2% v/v proanthocyanidins (CystiCran®). The solvents ethanol, methoxyethanol and polyethylene glycol were the least cytotoxic to all cell lines, with a maximum tolerated concentration (MTC) between 1 and 2% v/v. Ethanol, methanol and polyethylene glycol were mostly suitable for antimicrobial susceptibility testing, with minimum inhibitory concentrations (MICs) ≥ 25% v/v. The MTC values of the solvents dimethyl sulfoxide, dimethoxyethane and dimethylformamide varied from 0.03% to 1.09% v/v. The MICs of dimethyl sulfoxide, methoxyethanol and dimethoxyethane were in the range of 3.125-25% v/v. The cytotoxic effects of CystiCran® on eukaryotic cell lines were directly proportional to the superimposed effect of the solvents used. The results of this study can be useful for selecting the appropriate solvents for in vitro estimation of the cytotoxic and growth inhibitory effects of bioactive molecules in eukaryotic and prokaryotic cells.

7.
Biomolecules ; 11(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478154

RESUMO

Plants from the Rosacea family are rich in natural molecules with beneficial biological properties, and they are widely appreciated and used in the food industry, perfumery, and cosmetics. In this review, we are considering Rosa damascena Mill., Rosa alba L., Rosa centifolia L., and Rosa gallica L. as raw materials important for producing commercial products, analyzing and comparing the main biological activities of their essential oils, hydrolates, and extracts. A literature search was performed to find materials describing (i) botanical characteristics; (ii) the phytochemical profile; and (iii) biological properties of the essential oil sand extracts of these so called "old roses" that are cultivated in Bulgaria, Turkey, India, and the Middle East. The information used is from databases PubMed, Science Direct, and Google Scholar. Roses have beneficial healing properties due to their richness of beneficial components, the secondary metabolites as flavonoids (e.g., flavones, flavonols, anthocyanins), fragrant components (essential oils, e.g., monoterpenes, sesquiterpenes), and hydrolysable and condensed tannins. Rose essential oils and extracts with their therapeutic properties-as respiratory antiseptics, anti-inflammatories, mucolytics, expectorants, decongestants, and antioxidants-are able to act as symptomatic prophylactics and drugs, and in this way alleviate dramatic sufferings during severe diseases.


Assuntos
Perfumes , Fitoterapia , Rosa/química , Animais , Antineoplásicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Óleos de Plantas/química , Rosa/anatomia & histologia , Rosa/crescimento & desenvolvimento
8.
Molecules ; 27(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011479

RESUMO

This study evaluated the in vitro antineoplastic and antiviral potential and in vivo toxicity of twelve extracts with different polarity obtained from the herbaceous perennial plant Geum urbanum L. (Rosaceae). In vitro cytotoxicity was determined by ISO 10993-5/2009 on bladder cancer, (T-24 and BC-3C), liver carcinoma (HEP-G2) and normal embryonic kidney (HEK-293) cell lines. The antineoplastic activity was elucidated through assays of cell clonogenicity, apoptosis induction, nuclear factor kappa B p65 (NFκB p65) activation and total glutathione levels. Neutral red uptake study was applied for antiviral activity. The most promising G. urbanum extract was analyzed by UHPLC-HRMS. The acute in vivo toxicity analysis was carried out following OEDC 423. The ethyl acetate extract of aerial parts (EtOAc-AP) exhibited the strongest antineoplastic activity on bladder cancer cell lines (IC50 = 21.33-25.28 µg/mL) by inducing apoptosis and inhibiting NFκB p65 and cell clonogenicity. EtOAc and n-butanol extracts showed moderate antiviral activity against human adenovirus type 5 and human simplex virus type I. Seventy four secondary metabolites (gallic and ellagic acid derivatives, phenolic acids, flavonoids, etc.) were identified in EtOAc-AP by UHPLC-HRMS. This extract induced no signs of acute toxicity in liver and kidney specimens of H-albino mice in doses up to 210 mg/kg. In conclusion, our study contributes substantially to the detailed pharmacological characterization of G. urbanum, thus helping the development of health-promoting phytopreparations.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antivirais/farmacologia , Geum/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antivirais/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Especificidade de Órgãos/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem
9.
EMBO Rep ; 11(12): 956-61, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21072063

RESUMO

Nascent peptide-dependent translation arrest is crucial for the quality control of eukaryotic gene expression. Here we show that the receptor for activated C kinase 1 (RACK1) participates in nascent peptide-dependent translation arrest, and that its binding to the 40S subunit is crucial for this. Translation arrest by a nascent peptide results in Dom34/Hbs1-independent endonucleolytic cleavage of mRNA, and this is stimulated by RACK1. We propose that RACK1 stimulates the translation arrest that is induced by basic amino-acid sequences that leads to endonucleolytic cleavage of the mRNA, as well as to co-translational protein degradation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidades Ribossômicas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
J Biol Chem ; 284(16): 10343-52, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19204001

RESUMO

The potentially deleterious effects of aberrant mRNA lacking a termination codon (nonstop mRNA) are ameliorated by translation arrest, proteasome-mediated protein destabilization, and rapid mRNA degradation. Because polylysine synthesis via translation of the poly(A) mRNA tail leads to translation arrest and protein degradation by the proteasome, we examined the effects of other amino acid sequences. Insertion of 12 consecutive basic amino acids between GFP and HIS3 reporter genes, but not a stem-loop structure, resulted in degradation of the truncated green fluorescent protein (GFP) products by the proteasome. Translation arrest products derived from GFP-R12-FLAG-HIS3 or GFP-K12-FLAG-HIS3 mRNA were detected in a not4Delta mutant, and MG132 treatment did not affect the levels of the truncated arrest products. Deletion of other components of the Ccr4-Not complex did not increase the levels of the translation arrest products or reporter mRNAs. A L35A substitution in the Not4p RING finger domain, which disrupted its interaction with the Ubc4/Ubc5 E2 enzyme and its activity as an ubiquitin-protein ligase, also abrogated the degradation of arrest products. These results suggest that Not4p, a component of the Ccr4-Not complex, may act as an E3 ubiquitin-protein ligase for translation arrest products. The results let us propose that the interaction between basic amino acid residues and the negatively charged exit tunnel of the ribosome leads to translation arrest followed by Not4p-mediated ubiquitination and protein degradation by the proteasome.


Assuntos
Regulação da Expressão Gênica , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA