Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Photodiagnosis Photodyn Ther ; 46: 104015, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373469

RESUMO

OBJECTIVE: Photodynamic Therapy (PDT) and Photobiomodulation (PBM) are recognized for their potential in treating head and neck conditions. The heterogeneity of human tissue optical properties presents a challenge for effective dosimetry. The porcine mandible cadaver serves as an excellent model and has several similarities to human tissues of the dental oral craniofacial complex. This study aims to validate a novel modeling system that will help refine PDT and PBM dosimetry for the head and neck region. METHODS AND MATERIALS: Light transmission was analyzed through several tissue combinations at distances of 2 mm to 10 mm. Maximum light fluence rates (mW/cm2) were compared across tissue types to reveal the effects of tissue heterogeneity. RESULTS: The study revealed that light fluence is affected by tissue composition, with dentin/enamel showing reduced transmission and soft tissue regions exhibiting elevated values. The porcine model has proven to be efficient in mimicking human tissue responses to light, enabling the potential to optimize future protocols. CONCLUSION: The porcine mandible cadaver is a novel model to understand the complex interactions between light and tissue. This study provides a foundation for future investigations into dosimetry optimization for PDT and PBM.


Assuntos
Fotoquimioterapia , Animais , Suínos , Fotoquimioterapia/métodos , Mandíbula , Fármacos Fotossensibilizantes/farmacologia , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Cadáver
2.
Photodiagnosis Photodyn Ther ; 46: 104014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346466

RESUMO

OBJECTIVE: The primary aim was to investigate emerging 3D printing and optical acquisition technologies to refine and enhance photodynamic therapy (PDT) dosimetry in the management of malignant pleural mesothelioma (MPM). MATERIALS AND METHODS: A rigorous digital reconstruction of the pleural lung cavity was conducted utilizing 3D printing and optical scanning methodologies. These reconstructions were systematically assessed against CT-derived data to ascertain their accuracy in representing critical anatomic features and post-resection topographical variations. RESULTS: The resulting reconstructions excelled in their anatomical precision, proving instrumental translation for precise dosimetry calculations for PDT. Validation against CT data confirmed the utility of these models not only for enhancing therapeutic planning but also as critical tools for educational and calibration purposes. CONCLUSION: The research outlined a successful protocol for the precise calculation of light distribution within the complex environment of the pleural cavity, marking a substantive advance in the application of PDT for MPM. This work holds significant promise for individualizing patient care, minimizing collateral radiation exposure, and improving the overall efficiency of MPM treatments.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Fotoquimioterapia , Impressão Tridimensional , Humanos , Fotoquimioterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma Maligno/tratamento farmacológico , Cavidade Pleural , Mesotelioma/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pleurais/tratamento farmacológico , Tomografia Computadorizada por Raios X/métodos
3.
J Biomed Opt ; 29(1): 018001, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223299

RESUMO

Significance: Photodynamic therapy (PDT) is an established cancer treatment utilizing light-activated photosensitizers (PS). Effective treatment hinges on the PDT dose-dependent on PS concentration and light fluence-delivered over time. We introduce an innovative eight-channel PDT dose dosimetry system capable of concurrently measuring light fluence and PS concentration during treatment. Aim: We aim to develop and evaluate an eight-channel PDT dose dosimetry system for simultaneous measurement of light fluence and PS concentration. By addressing uncertainties due to tissue variations, the system enhances accurate PDT dosimetry for improved treatment outcomes. Approach: The study positions eight isotropic detectors strategically within the pleural cavity before PDT. These detectors are linked to bifurcated fibers, distributing signals to both a photodiode and a spectrometer. Calibration techniques are applied to counter tissue-related variations and improve measurement accuracy. The fluorescence signal is normalized using the measured light fluence, compensating for variations in tissue properties. Measurements were taken in 78 sites in the pleural cavities of 20 patients. Results: Observations reveal minimal Photofrin concentration variation during PDT at each site, juxtaposed with significant intra- and inter-patient heterogeneities. Across 78 treated sites in 20 patients, the average Photofrin concentration for all 78 sites is 4.98 µM, with a median concentration of 4.47 µM. The average PDT dose for all 78 sites is 493.17 µMJ/cm2, with a median dose of 442.79 µMJ/cm2. A significant variation in PDT doses is observed, with a maximum difference of 3.1 times among all sites within one patient and a maximum difference of 9.8 times across all patients. Conclusions: The introduced eight-channel PDT dose dosimetry system serves as a valuable real-time monitoring tool for light fluence and PS concentration during PDT. Its ability to mitigate uncertainties arising from tissue properties enhances dosimetry accuracy, thus optimizing treatment outcomes and bolstering the effectiveness of PDT in cancer therapy.


Assuntos
Éter de Diematoporfirina , Fotoquimioterapia , Humanos , Éter de Diematoporfirina/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Radiometria/métodos
4.
J Biomed Opt ; 27(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36316298

RESUMO

Significance: Dosimetry for photodynamic therapy is dependent on multiple parameters. Critically, in vivo tissue optical properties and hemodynamics must be determined carefully to calculate the total delivered light dose. Aim: Spectroscopic analysis of diffuse reflectance measurements of tissues taken during a clinical trial of 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a-mediated photodynamic therapy for pleural malignancies. Approach: Diffuse reflectance measurements were taken immediately before and after photodynamic therapy. Measurements were analyzed with a nonlinearly constrained multiwavelength, multi-distance algorithm to extract tissue optical properties, tissue oxygen saturation, StO2, and total hemoglobin concentration (THC). Results: A total of 25 patients were measured, 23 of which produced reliable fits for optical property extraction. For all tissue types, StO2 ranged through [24, 100]% and [22, 97]% for pre-photodynamic therapy (PDT) and post-PDT conditions, respectively. Mean THC ranged through [ 69,152 ] µM and [ 48,111 ] µM, for pre-PDT and post-PDT, respectively. Absorption coefficients, µa, ranged through [ 0.024 , 3.5 ] cm - 1 and [ 0.039 , 3 ] cm - 1 for pre-PDT and post-PDT conditions, respectively. Reduced scattering coefficients, µs', ranged through [ 1.4 , 73.4 ] cm - 1 and [ 1.2 , 64 ] cm - 1 for pre-PDT and post-PDT conditions, respectively. Conclusions: There were similar pre- and post-PDT tissue optical properties and hemodynamics. The high variability in each parameter for all tissue types emphasizes the importance of these measurements for accurate PDT dosimetry.


Assuntos
Fotoquimioterapia , Neoplasias Pleurais , Humanos , Hemodinâmica , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pleurais/tratamento farmacológico
5.
Artigo em Inglês | MEDLINE | ID: mdl-34083857

RESUMO

Total Skin Electron Therapy (TSET) utilizes high-energy electrons to treat cancers on the entire body surface. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high-energy electron beam and tissue. Cherenkov emission can be used to evaluate the dose uniformity on the surface of the patient in real-time using a time-gated intensified camera system. Each patient was monitored during TSET by in-vivo detectors (IVD) as well as Scintillators. Patients undergoing TSET in various conditions (whole body and half body) were imaged and analyzed. A rigorous methodology for converting Cherenkov intensity to surface dose as products of correction factors, including camera vignette correction factor, incident radiation correction factor, and tissue optical properties correction factor. A comprehensive study has been carried out by inspecting various positions on the patients such as vertex, chest, perineum, shins, and foot relative to the umbilicus point (the prescription point).

6.
Artigo em Inglês | MEDLINE | ID: mdl-34083859

RESUMO

Tissue optical properties are crucial for determining the light dose delivered to the tumor. Two probes are compared: the two-catheter probe is based on transmittance measurement between one point source and one isotropic detector inside parallel catheters spaced at 0.5 cm along a 1-inch diameter transparent cylinder; and a 1-inch trans-rectal diffuse optical tomography (DOT) probe designed for prostate measurements, using a multiple fiber-array with source-detector separations of 1.4-10 mm. The two-catheter probe uses an empirical model for primary and scatter light fluence rates in the cylindrical cavity condition for anal PDT to determine optical properties along the source catheter using dual motors to move the source and detector along the catheters. The DOT probe uses finite element method (FEM) to obtain distribution of optical properties in 3D. Validations for the two probes were performed in liquid and solid phantoms. For each method, validation was performed in tissue-mimicking liquid phantoms for a range of known optical properties (µa between 0.05 and 0.9 cm-1 and µs' between 5.5 and 16.5 cm-1). To cross-check the two methods, solid phantoms were created of known optical properties at the University of Pennsylvania and sent for measurement to Princess Margaret Cancer Centre (PMH) to mimic realistic patient simulating conditions. Measurements were taken and optical properties were then recovered without knowing the expected values to cross-validate each probe. The results show modest agreement between the measured µa and µs'values, but high degree of agreement between the measured µeff performed independently using the two methods.

7.
Phys Med Biol ; 65(7): 075006, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32053799

RESUMO

Pleural photodynamic therapy (PDT) is performed intraoperatively for the treatment of microscopic disease in patients with malignant pleural mesothelioma. Accurate delivery of light dose is critical to PDT efficiency. As a standard of care, light fluence is delivered to the prescribed fluence using eight isotropic detectors in pre-determined discrete locations inside the pleural cavity that is filled with a dilute Intralipid solution. An optical infrared (IR) navigation system was used to monitor reflective passive markers on a modified and improved treatment delivery wand to track the position of the light source within the treatment cavity during light delivery. This information was used to calculate the light dose, incorporating a constant scattered light dose and using a dual correction method. Calculation methods were extensively compared for eight detector locations and seven patient case studies. The light fluence uniformity was also quantified by representing the unraveled three-dimensional geometry on a two-dimensional plane. Calculated light fluence at the end of treatment delivery was compared to measured values from isotropic detectors. Using a constant scattered dose for all detector locations along with a dual correction method, the difference between calculated and measured values for each detector was within 15%. Primary light dose alone does not fully account for the light delivered inside the cavity. This is useful in determining the light dose delivered to areas of the pleural cavity between detector locations, and can serve to improve treatment delivery with implementation in real-time in the surgical setting. We concluded that the standard deviation of light fluence uniformity for this method of pleural PDT is 10%.


Assuntos
Raios Infravermelhos , Fotoquimioterapia , Neoplasias Pleurais/terapia , Radiometria/métodos , Algoritmos , Humanos , Neoplasias Pulmonares/terapia , Mesotelioma/terapia , Mesotelioma Maligno , Fotoquimioterapia/métodos
8.
Photochem Photobiol ; 96(2): 310-319, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31556122

RESUMO

Uniform light fluence distribution for patients undergoing photodynamic therapy (PDT) is critical to ensure predictable PDT outcomes. However, current practice when delivering intrapleural PDT uses a point source to deliver light that is monitored by seven isotropic detectors placed within the pleural cavity to assess its uniformity. We have developed a real-time infrared (IR) tracking camera to follow the movement of the light point source and the surface contour of the treatment area. The calculated light fluence rates were matched with isotropic detectors using a two-correction factor method and an empirical model that includes both direct and scattered light components. Our clinical trial demonstrated that we can successfully implement the IR navigation system in 75% (15/20) of the patients. Data were successfully analyzed in 80% (12/15) patients because detector locations were not available for three patients. We conclude that it is feasible to use an IR camera-based system to track the motion of the light source during PDT and demonstrate its use to quantify the uniformity of light distribution, which deviated by a standard deviation of 18% from the prescribed light dose. The navigation system will fail when insufficient percentage of light source positions is obtained (<30%) during PDT.


Assuntos
Clorofila/análogos & derivados , Raios Infravermelhos , Fotoquimioterapia/métodos , Neoplasias Pleurais/tratamento farmacológico , Clorofila/química , Humanos
9.
Phys Med Biol ; 63(1): 015031, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29106380

RESUMO

Photosensitizer fluorescence excited by photodynamic therapy (PDT) treatment light can be used to monitor the in vivo concentration of the photosensitizer and its photobleaching. The temporal integral of the product of in vivo photosensitizer concentration and light fluence is called PDT dose, which is an important dosimetry quantity for PDT. However, the detected photosensitizer fluorescence may be distorted by variations in the absorption and scattering of both excitation and fluorescence light in tissue. Therefore, correction of the measured fluorescence for distortion due to variable optical properties is required for absolute quantification of photosensitizer concentration. In this study, we have developed a four-channel PDT dose dosimetry system to simultaneously acquire light dosimetry and photosensitizer fluorescence data. We measured PDT dose at four sites in the pleural cavity during pleural PDT. We have determined an empirical optical property correction function using Monte Carlo simulations of fluorescence for a range of physiologically relevant tissue optical properties. Parameters of the optical property correction function for Photofrin fluorescence were determined experimentally using tissue-simulating phantoms. In vivo measurements of photosensitizer fluorescence showed negligible photobleaching of Photofrin during the PDT treatment, but large intra- and inter-patient heterogeneities of in vivo Photofrin concentration are observed. PDT doses delivered to 22 sites in the pleural cavity of 8 patients were different by 2.9 times intra-patient and 8.3 times inter-patient.


Assuntos
Éter de Diematoporfirina/uso terapêutico , Mesotelioma/tratamento farmacológico , Imagens de Fantasmas , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pleurais/tratamento farmacológico , Radiometria/métodos , Ensaios Clínicos Fase II como Assunto , Fluorescência , Humanos , Mesotelioma/metabolismo , Mesotelioma/patologia , Método de Monte Carlo , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Espectrometria de Fluorescência
10.
Front Phys ; 32015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25995987

RESUMO

Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light fluence uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

11.
Acta Oncol ; 54(7): 1032-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25789715

RESUMO

PURPOSE: The purpose of this study was to compare the dose to heart, left anterior descending (LAD) artery and lung between proton and photon beam irradiation for left-sided early stage breast cancer. MATERIAL AND METHODS: Ten women with early stage left-sided breast cancer were treated with breast conserving surgery and radiation. Whole breast radiation was delivered for actual treatment via a tangential technique with deep inspiration breath hold (DIBH) utilizing inverse planned intensity-modulated radiation therapy (IMRT). Each patient was replanned on an Institutional Review Board (IRB)-approved prospective study using en face proton beam radiation with both uniform scanning (US) and pencil beam scanning (PBS) techniques. RESULTS: Both PBS (0.011 Gy) and US (0.009 Gy) proton plans resulted in a significantly lower mean heart dose compared to IMRT (1.612 Gy) (p < 0.05 for PBS vs. IMRT and US vs. IMRT). The Dmean, Dmin, Dmax, and D0.2cm(3) of the LAD with either proton technique were significantly lower (p = 0.005) compared to IMRT. Both US and PBS reduced the mean dose to the lungs compared to IMRT. The coverage of the breast planning target volume was comparable between photon and proton plans. CONCLUSIONS: The dose to whole heart was relatively low in this study of patients treated under conditions of DIBH. However, proton beam radiation was associated with lower minimum, maximum, and dose to 0.2 cm(3) of the LAD, which is the critical structure for late radiation therapy effects, compared to even the most optimized photon beam plan with DIBH and IMRT.


Assuntos
Vasos Coronários/efeitos da radiação , Coração/efeitos da radiação , Terapia com Prótons/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Unilaterais da Mama/radioterapia , Suspensão da Respiração , Feminino , Humanos , Órgãos em Risco , Lesões por Radiação/prevenção & controle , Planejamento da Radioterapia Assistida por Computador/métodos
12.
Proc SPIE Int Soc Opt Eng ; 89262014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25999648

RESUMO

Determination of optical properties (absorption (µa) and scattering (µs') coefficients) in human tissue is important when it comes to accurate calculation of fluence rate in and around tissue area. ALA application to the tissue induces production of protoporphyrin IX when activated by red light. Changes in the tissue optical properties can send information such as treatment outcome and tissue drug concentration. Patients in this study were treated with PDT for head and neck mucosal dysplasia. They were enrolled in a phase I study of escalating light doses and oral ALA with 60mg/kg. Red light at 630nm was administered to the tumor from a laser. The light dose was escalated from 50-200J/cm2 with a measured fluence rate at tissue surface of 100mW/cm2. We developed a light detection device for the purpose of determining optical properties in vivo using the semi-infinite method. The light detection device consists of two parallel, placed 5mm apart. In one of the catheters a 2 mm long linear diffusing light source is placed while in the second catheter, a calibrated isotropic detector is placed. The detector is scanned along the length of the light source containing catheter. Scans are done with the device placed on the treatment area (tumor) and on the normal tissue. Optical properties were measured in-vivo before and after PDT delivery for both normal tissue and tumor.

13.
Proc SPIE Int Soc Opt Eng ; 8568: 85680Q, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25914794

RESUMO

A custom-made robotic multichannel platform for interstitial photodynamic therapy (PDT) and diffuse optical tomography (DOT) was developed and tested in a phantom experiment. The system, which was compatible with the operating room (OR) environment, had 16 channels for independent positioning of light sources and/or isotropic detectors in separate catheters. Each channel's motor had an optical encoder for position feedback, with resolution of 1.5 mm, and a maximum speed of 5 cm/s. Automatic calibration of detector positions was implemented using an optical diode beam that defined the starting position of each motor, and by means of feedback algorithms controlling individual channels. As a result, the accuracy of zero position of 0.1 mm for all channels was achieved. We have also employed scanning procedures where detectors automatically covered the appropriate range around source positions. Thus, total scan time for a typical optical properties (OP) measurement throughout the phantom was about 1.5 minutes with point sources. The OP were determined based on the measured light fluence rates. These enhancements allow a tremendous improvement of treatment quality for a bulk tumor compared to the systems employed in previous clinical trials.

14.
Proc SPIE Int Soc Opt Eng ; 85682013 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25999646

RESUMO

In-vivo light dosimetry for patients undergoing photodynamic therapy (PDT) is critical for predicting PDT outcome. Patients in this study are enrolled in a Phase I clinical trial of HPPH-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. They are administered 4mg per kg body weight HPPH 48 hours before the surgery and receive light therapy with a fluence of 15-45 J/cm2 at 661 and 665nm. Fluence rate (mW/cm2) and cumulative fluence (J/cm2) are monitored at 7 sites during the light treatment delivery using isotropic detectors. Light fluence (rate) delivered to patients is examined as a function of treatment time, volume and surface area. In a previous study, a correlation between the treatment time and the treatment volume and surface area was established. However, we did not include the direct light and the effect of the shape of the pleural surface on the scattered light. A real-time infrared (IR) navigation system was used to separate the contribution from the direct light. An improved expression that accurately calculates the total fluence at the cavity wall as a function of light source location, cavity geometry and optical properties is determined based on theoretical and phantom studies. The theoretical study includes an expression for light fluence rate in an elliptical geometry instead of the spheroid geometry used previously. The calculated light fluence is compared to the measured fluence in patients of different cavity geometries and optical properties. The result can be used as a clinical guideline for future pleural PDT treatment.

15.
Proc SPIE Int Soc Opt Eng ; 85682013 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25999647

RESUMO

Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for mesothelioma with remarkable results. In the current intrapleural PDT protocol, a moving fiber-based point source is used to deliver the light and the light dose are monitored by 7 detectors placed in the pleural cavity. To improve the delivery of light dose uniformity, an infrared (IR) camera system is used to track the motion of the light sources. A treatment planning system uses feedback from the detectors as well as the IR camera to update light fluence distribution in real-time, which is used to guide the light source motion for uniform light dose distribution. We have improved the GUI of the light dose calculation engine to provide real-time light fluence distribution suitable for guiding the surgery to delivery light more uniformly. A dual-correction method is used in the feedback system, so that fluence calculation can match detector readings using both direct and scatter light models. An improved measurement device is developed to automatically acquire laser position for the point source. Comparison of the effects of the guidance is presented in phantom study.

16.
Phys Med Biol ; 57(19): 6025-46, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22968172

RESUMO

For interstitial photodynamic therapy (PDT), cylindrical diffusing fibers (CDFs) are often used to deliver light. This study examines the feasibility and accuracy of using CDFs to characterize the absorption (µ(a)) and reduced scattering (µ'(s)) coefficients of heterogeneous turbid media. Measurements were performed in tissue-simulating phantoms with µ(a) between 0.1 and 1 cm(-1) and µ'(s) between 3 and 10 cm(-1) with CDFs 2 to 4 cm in length. Optical properties were determined by fitting the measured light fluence rate profiles at a fixed distance from the CDF axis using a heterogeneous kernel model in which the cylindrical diffusing fiber is treated as a series of point sources. The resulting optical properties were compared with independent measurement using a point source method. In a homogenous medium, we are able to determine the absorption coefficient µ(a) using a value of µ'(s) determined a priori (uniform fit) or µ'(s) obtained by fitting (variable fit) with standard (maximum) deviations of 6% (18%) and 18% (44%), respectively. However, the CDF method is found to be insensitive to variations in µ'(s), thus requiring a complementary method such as using a point source for determination of µ'(s). The error for determining µ(a) decreases in very heterogeneous turbid media because of the local absorption extremes. The data acquisition time for obtaining the one-dimensional optical properties distribution is less than 8 s. This method can result in dramatically improved accuracy of light fluence rate calculation for CDFs for prostate PDT in vivo when the same model and geometry is used for forward calculations using the extrapolated tissue optical properties.


Assuntos
Luz , Fibras Ópticas , Fenômenos Ópticos , Fotoquimioterapia/instrumentação , Absorção , Difusão , Radiometria , Fatores de Tempo
17.
Proc SPIE Int Soc Opt Eng ; 82102012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-26005245

RESUMO

Intrapleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for mesothelioma. In the current intrapleural PDT protocol, a moving fiber-based point source is used to deliver the light and the light dose are monitored by 7 detectors placed in the pleural cavity. To improve the delivery of light dose uniformity, an infrared (IR) camera system is used to track the motion of the light sources. A treatment planning system uses feedback from the detectors as well as the IR camera to update light fluence distribution in real-time, which is used to guide the light source motion for uniform light dose distribution. We have reported previously the success of using IR camera to passively monitor the light fluence rate distribution. In this study, the real-time feedback has been implemented in the current system prototype, by transferring data from the IR camera to a computer at a rate of 20 Hz, and by calculation/displaying using Matlab. A dual-correction method is used in the feedback system, so that fluence calculation can match detector readings. Preliminary data from a phantom showed superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown using the correction method dose model.

18.
Proc SPIE Int Soc Opt Eng ; 75512010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26005243

RESUMO

This study examines the light fluence (rate) delivered to patients undergoing pleural PDT as a function of treatment time, treatment volume and surface area. The accuracy of treatment delivery is analyzed as a function of the calibration accuracies of each isotropic detector and the calibration integrating sphere. The patients studied here are enrolled in a Phase I clinical trial of HPPH-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. Patients are administered 4mg per kg body weight HPPH 24-48 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with light therapy with a fluence of 15-60 J/cm2 at 661nm. Fluence rate (mW/cm2) and cumulative fluence (J/cm2) is monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors are used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 15%. The mean fluence rate delivery and treatment time are recorded. A correlation between the treatment time and the treatment volume is established. The result can be used as a clinical guideline for future pleural PDT treatment.

19.
Proc SPIE Int Soc Opt Eng ; 71642009 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-25914792

RESUMO

In-vivo light dosimetry for patients undergoing photodynamic therapy (PDT) is one of the critical dosimetry quantities for predicting PDT outcome. This study examines the relationship between the PDT treatment time and thoracic treatment volume and surface area for patients undergoing pleural PDT. In addition, the mean light fluence (rate) and its accuracy were quantified. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 years old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm2 at 630nm. Fluence rate (mW/cm2) and cumulative fluence (J/cm2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate deliver varied from 37.84 to 94.05 mW/cm2 and treatment time varied from 1762 to 5232s. We found a linear correlation between the total treatment time and the treatment area: t (sec) = 4.80 A (cm2). A similar correlation exists between the treatment time and the treatment volume: t (sec) = 2.33 V (cm3). The results can be explained using an integrating sphere theory and the measured tissue optical properties assuming that the saline liquid has a mean absorption coefficient of 0.05 cm-1. Our long term accuracy studies confirmed light fluence rate measurement accuracy of ±10%. The results can be used as a clinical guideline for future pleural PDT treatment.

20.
Photochem Photobiol ; 82(5): 1270-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16808592

RESUMO

The in vivo fluorescence emission from human prostates was measured before and after motexafin lutetium (MLu)-mediated photodynamic therapy (PDT). A single side-firing optical fiber was used for both the delivery of 465 nm light-emitting diode excitation light and the collection of emitted fluorescence. It was placed interstitially within the prostate via a closed transparent plastic catheter. Fitting of the collected fluorescence emission spectra using the known fluorescence spectrum of 1 mg/kg MLu in an intralipid phantom yields a quantitative measure of the local MLu concentration. We found that an additional correction factor is needed to account for the reduction of the MLu fluorescence intensity measured in vivo due to strong optical absorption in the prostate. We have adopted an empirical correction formula given by C = (3.1 cm(-1)/micro's) exp (microeff x 0.97 cm), which ranges from approximately 3 to 16, with a mean of 9.3 +/-4.8. Using a computer-controlled step motor to move the probe incrementally along parallel tracks within the prostate we can determine one-dimensional profiles of the MLu concentration. The absolute MLu concentration and the shape of its distribution are confirmed by ex vivo assay and by diffuse absorption measurements, respectively. We find significant heterogeneity in photosensitizer concentration within and among five patients. These variations occur over large enough spatial scales compared with the sampling volume of the fluorescence emission that mapping the distribution in three dimensions is possible.


Assuntos
Metaloporfirinas/uso terapêutico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Humanos , Masculino , Metaloporfirinas/administração & dosagem , Metaloporfirinas/farmacocinética , Imagens de Fantasmas , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA