Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 2(11): 100436, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841289

RESUMO

Cellular morphology has the capacity to serve as a surrogate for cellular state and functionality. However, primary cardiomyocytes, the standard model in cardiovascular research, are highly heterogeneous cells and therefore impose methodological challenges to analysis. Hence, we aimed to devise a robust methodology to deconvolute cardiomyocyte morphology on a single-cell level: C-MORE (cellular morphology recognition) is a workflow from bench to data analysis tailored for heterogeneous primary cells using our R package cmoRe. We demonstrate its utility in proof-of-principle applications such as modulation of canonical hypertrophy pathways and linkage of genotype-phenotype in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). In our pilot study, exposure of cardiomyocytes to blood plasma prior to versus after aortic valve replacement allows identification of a disease fingerprint and reflects partial reversibility following therapeutic intervention. C-MORE is a valuable tool for cardiovascular research with possible fields of application in basic research and personalized medicine.


Assuntos
Algoritmos , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Biópsia Líquida , Medicina de Precisão , Análise de Célula Única , Animais , Estenose da Valva Aórtica/patologia , Ciclo Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hipertrofia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Ratos , Reprodutibilidade dos Testes
2.
J Biol Chem ; 290(22): 13935-47, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25882843

RESUMO

Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated ß-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics.


Assuntos
Regulação da Expressão Gênica , Coração/fisiologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Células-Tronco/metabolismo , Apoptose , Ciclo Celular , Núcleo Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Proteínas de Fluorescência Verde/metabolismo , Insuficiência Cardíaca , Ventrículos do Coração/metabolismo , Humanos , Lentivirus/metabolismo , Mitocôndrias/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Fenótipo , Regeneração , Células-Tronco/citologia , Frações Subcelulares/metabolismo , beta-Galactosidase/metabolismo
3.
Circ Res ; 115(3): 376-87, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24916111

RESUMO

RATIONALE: The senescent cardiac phenotype is accompanied by changes in mitochondrial function and biogenesis causing impairment in energy provision. The relationship between myocardial senescence and Pim kinases deserves attention because Pim-1 kinase is cardioprotective, in part, by preservation of mitochondrial integrity. Study of the pathological effects resulting from genetic deletion of all Pim kinase family members could provide important insight about cardiac mitochondrial biology and the aging phenotype. OBJECTIVE: To demonstrate that myocardial senescence is promoted by loss of Pim leading to premature aging and aberrant mitochondrial function. METHODS AND RESULTS: Cardiac myocyte senescence was evident at 3 months in Pim triple knockout mice, where all 3 isoforms of Pim kinase family members are genetically deleted. Cellular hypertrophic remodeling and fetal gene program activation were followed by heart failure at 6 months in Pim triple knockout mice. Metabolic dysfunction is an underlying cause of cardiac senescence and instigates a decline in cardiac function. Altered mitochondrial morphology is evident consequential to Pim deletion together with decreased ATP levels and increased phosphorylated AMP-activated protein kinase, exposing an energy deficiency in Pim triple knockout mice. Expression of the genes encoding master regulators of mitochondrial biogenesis, PPARγ (peroxisome proliferator-activated receptor gamma) coactivator-1 α and ß, was diminished in Pim triple knockout hearts, as were downstream targets included in mitochondrial energy transduction, including fatty acid oxidation. Reversal of the dysregulated metabolic phenotype was observed by overexpressing c-Myc (Myc proto-oncogene protein), a downstream target of Pim kinases. CONCLUSIONS: Pim kinases prevent premature cardiac aging and maintain a healthy pool of functional mitochondria leading to efficient cellular energetics.


Assuntos
Senilidade Prematura/metabolismo , Cardiomegalia/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Senilidade Prematura/genética , Senilidade Prematura/patologia , Animais , Cardiomegalia/patologia , Linhagem Celular Transformada , Respiração Celular/genética , Senescência Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , RNA Interferente Pequeno/genética , Ratos , Telômero/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
EMBO Mol Med ; 6(1): 57-65, 2014 01.
Artigo em Inglês | MEDLINE | ID: mdl-24408966

RESUMO

Diabetes is a multi-organ disease and diabetic cardiomyopathy can result in heart failure, which is a leading cause of morbidity and mortality in diabetic patients. In the liver, insulin resistance contributes to hyperglycaemia and hyperlipidaemia, which further worsens the metabolic profile. Defects in mTOR signalling are believed to contribute to metabolic dysfunctions in diabetic liver and hearts, but evidence is missing that mTOR activation is causal to the development of diabetic cardiomyopathy. This study shows that specific mTORC1 inhibition by PRAS40 prevents the development of diabetic cardiomyopathy. This phenotype was associated with improved metabolic function, blunted hypertrophic growth and preserved cardiac function. In addition PRAS40 treatment improves hepatic insulin sensitivity and reduces systemic hyperglycaemia in obese mice. Thus, unlike rapamycin, mTORC1 inhibition with PRAS40 improves metabolic profile in diabetic mice. These findings may open novel avenues for therapeutic strategies using PRAS40 directed against diabetic-related diseases.


Assuntos
Cardiomiopatias Diabéticas/prevenção & controle , Insulina/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Adenoviridae/genética , Animais , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/etiologia , Dieta Hiperlipídica , Vetores Genéticos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Miócitos Cardíacos/citologia , Obesidade/complicações , Obesidade/metabolismo , Fenótipo , Fosfoproteínas/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
5.
J Biol Chem ; 289(9): 5348-56, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24375406

RESUMO

Autologous c-kit(+) cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Miocárdio/metabolismo , Peptidilprolil Isomerase/biossíntese , Células-Tronco/metabolismo , Animais , Sobrevivência Celular/fisiologia , Ciclina B/genética , Ciclina B/metabolismo , Ciclina D/genética , Ciclina D/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/citologia , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Células-Tronco/citologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(31): 12661-6, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23842089

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1), necessary for cellular growth, is regulated by intracellular signaling mediating inhibition of mTORC1 activation. Among mTORC1 regulatory binding partners, the role of Proline Rich AKT Substrate of 40 kDa (PRAS40) in controlling mTORC1 activity and cellular growth in response to pathological and physiological stress in the heart has never been addressed. This report shows PRAS40 is regulated by AKT in cardiomyocytes and that AKT-driven phosphorylation relieves the inhibitory function of PRAS40. PRAS40 overexpression in vitro blocks mTORC1 in cardiomyocytes and decreases pathological growth. Cardiomyocyte-specific overexpression in vivo blunts pathological remodeling after pressure overload and preserves cardiac function. Inhibition of mTORC1 by PRAS40 preferentially promotes protective mTORC2 signaling in chronic diseased myocardium. In contrast, strong PRAS40 phosphorylation by AKT allows for physiological hypertrophy both in vitro and in vivo, whereas cardiomyocyte-specific overexpression of a PRAS40 mutant lacking capacity for AKT-phosphorylation inhibits physiological growth in vivo, demonstrating that AKT-mediated PRAS40 phosphorylation is necessary for induction of physiological hypertrophy. Therefore, PRAS40 phosphorylation acts as a molecular switch allowing mTORC1 activation during physiological growth, opening up unique possibilities for therapeutic regulation of the mTORC1 complex to mitigate pathologic myocardial hypertrophy by PRAS40.


Assuntos
Cardiomegalia/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/terapia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Proteínas Musculares/genética , Mutação , Miócitos Cardíacos/patologia , Fosfoproteínas/genética , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética
7.
Proc Natl Acad Sci U S A ; 110(15): 5969-74, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530233

RESUMO

Mitochondrial morphological dynamics affect the outcome of ischemic heart damage and pathogenesis. Recently, mitochondrial fission protein dynamin-related protein 1 (Drp1) has been identified as a mediator of mitochondrial morphological changes and cell death during cardiac ischemic injury. In this study, we report a unique relationship between Pim-1 activity and Drp1 regulation of mitochondrial morphology in cardiomyocytes challenged by ischemic stress. Transgenic hearts overexpressing cardiac Pim-1 display reduction of total Drp1 protein levels, increased phosphorylation of Drp1-(S637), and inhibition of Drp1 localization to the mitochondria. Consistent with these findings, adenoviral-induced Pim-1 neonatal rat cardiomyocytes (NRCMs) retain a reticular mitochondrial phenotype after simulated ischemia (sI) and decreased Drp1 mitochondrial sequestration. Interestingly, adenovirus Pim-dominant negative NRCMs show increased expression of Bcl-2 homology 3 (BH3)-only protein p53 up-regulated modulator of apoptosis (PUMA), which has been previously shown to induce Drp1 accumulation at mitochondria and increase sensitivity to apoptotic stimuli. Overexpression of the p53 up-regulated modulator of apoptosis-dominant negative adenovirus attenuates localization of Drp1 to mitochondria in adenovirus Pim-dominant negative NRCMs promotes reticular mitochondrial morphology and inhibits cell death during sI. Therefore, Pim-1 activity prevents Drp1 compartmentalization to the mitochondria and preserves reticular mitochondrial morphology in response to sI.


Assuntos
Dinaminas/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/fisiologia , Adenoviridae/genética , Animais , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Ratos
8.
Circ Res ; 112(9): 1244-52, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23487407

RESUMO

RATIONALE: Cardiac hypertrophy results from the complex interplay of differentially regulated cascades based on the phosphorylation status of involved signaling molecules. Although numerous critical regulatory kinases and phosphatases have been identified in the myocardium, the intracellular mechanism for temporal regulation of signaling duration and intensity remains obscure. In the nonmyocyte context, control of folding, activity, and stability of proteins is mediated by the prolyl isomerase Pin1, but the role of Pin1 in the heart is unknown. OBJECTIVE: To establish the role of Pin1 in the heart. METHODS AND RESULTS: Here, we show that either genetic deletion or cardiac overexpression of Pin1 blunts hypertrophic responses induced by transaortic constriction and consequent cardiac failure in vivo. Mechanistically, we find that Pin1 directly binds to Akt, mitogen activated protein kinase (MEK), and Raf-1 in cultured cardiomyocytes after hypertrophic stimulation. Furthermore, loss of Pin1 leads to diminished hypertrophic signaling of Akt and MEK, whereas overexpression of Pin1 increases Raf-1 phosphorylation on the autoinhibitory site Ser259, leading to reduced MEK activation. CONCLUSIONS: Collectively, these data support a role for Pin1 as a central modulator of the intensity and duration of 2 major hypertrophic signaling pathways, thereby providing a novel target for regulation and control of cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Miócitos Cardíacos/enzimologia , Peptidilprolil Isomerase/metabolismo , Transdução de Sinais , Animais , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Dependovirus/genética , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/patologia , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/deficiência , Peptidilprolil Isomerase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Ratos , Fatores de Tempo , Transdução Genética , Transfecção , Ultrassonografia , Quinases raf/metabolismo
9.
Stem Cells ; 30(11): 2512-22, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915504

RESUMO

Cardiac regeneration following myocardial infarction rests with the potential of c-kit+ cardiac progenitor cells (CPCs) to repopulate damaged myocardium. The ability of CPCs to reconstitute the heart is restricted by patient age and disease progression. Increasing CPC proliferation, telomere length, and survival will improve the ability of autologous CPCs to be successful in myocardial regeneration. Prior studies have demonstrated enhancement of myocardial regeneration by engineering CPCs to express Pim-1 kinase, but cellular and molecular mechanisms for Pim-1-mediated effects on CPCs remain obscure. We find CPCs rapidly expand following overexpression of cardioprotective kinase Pim-1 (CPCeP), however, increases in mitotic rate are short-lived as late passage CPCePs proliferate similar to control CPCs. Telomere elongation consistent with a young phenotype is observed following Pim-1 modification of CPCeP; in addition, telomere elongation coincides with increased telomerase expression and activity. Interestingly, telomere length and telomerase activity normalize after several rounds of passaging, consistent with the ability of Pim-1 to transiently increase mitosis without resultant oncogenic transformation. Accelerating mitosis in CPCeP without immortalization represents a novel strategy to expand the CPC population in order to improve their therapeutic efficacy.


Assuntos
Mitose , Miocárdio/citologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Células-Tronco/fisiologia , Homeostase do Telômero , Animais , Cardiotoxinas/farmacologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Doxorrubicina/farmacologia , Ativação Enzimática , Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Camundongos , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Medicina Regenerativa , Células-Tronco/enzimologia , Células-Tronco/metabolismo , Telomerase/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Tiazóis/farmacologia
10.
Physiol Rev ; 91(3): 1023-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21742795

RESUMO

One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.


Assuntos
Miocárdio/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Cardiomiopatias/fisiopatologia , Sobrevivência Celular/fisiologia , Ativação Enzimática , Humanos , MicroRNAs/metabolismo , Mitocôndrias/enzimologia , Contração Miocárdica/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Caracteres Sexuais , Transdução de Sinais/fisiologia
11.
Circ Res ; 108(8): 960-70, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21350213

RESUMO

RATIONALE: Stem cell therapies to regenerate damaged cardiac tissue represent a novel approach to treat heart disease. However, the majority of adoptively transferred stem cells delivered to damaged myocardium do not survive long enough to impart protective benefits, resulting in modest functional improvements. Strategies to improve survival and proliferation of stem cells show promise for significantly enhancing cardiac function and regeneration. OBJECTIVE: To determine whether injected cardiac progenitor cells (CPCs) genetically modified to overexpress nuclear Akt (CPCeA) increase structural and functional benefits to infarcted myocardium relative to control CPCs. METHODS AND RESULTS: CPCeA exhibit significantly increased proliferation and secretion of paracrine factors compared with CPCs. However, CPCeA exhibit impaired capacity for lineage commitment in vitro. Infarcted hearts receiving intramyocardial injection of CPCeA have increased recruitment of endogenous c-kit cells compared with CPCs, but neither population provides long-term functional and structural improvements compared with saline-injected controls. Pharmacological inhibition of Akt alleviated blockade of lineage commitment in CPCeA. CONCLUSIONS: Although overexpression of nuclear Akt promotes rapid proliferation and secretion of protective paracrine factors, the inability of CPCeA to undergo lineage commitment hinders their capacity to provide functional or structural benefits to infarcted hearts. Despite enhanced recruitment of endogenous CPCs, lack of functional improvement in CPCeA-treated hearts demonstrates CPC lineage commitment is essential to the regenerative response. Effective stem cell therapies must promote cellular survival and proliferation without inhibiting lineage commitment. Because CPCeA exhibit remarkable proliferative potential, an inducible system mediating nuclear Akt expression could be useful to augment cell therapy approaches.


Assuntos
Núcleo Celular/enzimologia , Regulação Enzimológica da Expressão Gênica , Inibidores do Crescimento/fisiologia , Infarto do Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas c-akt/biossíntese , Células-Tronco/enzimologia , Animais , Linhagem da Célula/genética , Núcleo Celular/patologia , Proliferação de Células , Células Cultivadas , Feminino , Inibidores do Crescimento/biossíntese , Inibidores do Crescimento/genética , Masculino , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Miocárdio/citologia , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Células-Tronco/patologia , Relação Estrutura-Atividade
12.
Eur Heart J ; 32(17): 2179-88, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21228009

RESUMO

AIMS: The cascade of events leading to compromised mitochondrial integrity in response to stress is mediated by various combinatorial interactions of pro- and anti-apoptotic molecules. Nur77, an immediate early gene that encodes a nuclear orphan receptor, translocates from the nucleus to mitochondria to induce cytochrome c release and apoptosis in cancer cells in response to various pro-apoptotic treatments. However, the role of Nur77 in the cardiac setting is still unclear. The objective of this study is to determine the physiological relevance and pathophysiological importance of Nur77 in cardiomyocytes. METHODS AND RESULTS: Myocardial Nur77 is upregulated following cardiomyopathic injury and, while expressed in the postnatal myocardium, declines in level within weeks after birth. Nur77 is localized predominantly in cardiomyocyte nuclei under normal conditions where it is not apoptotic, but translocates to mitochondria in response to oxidative stress both in vitro and in vivo. Mitochondrial localization of Nur77 induces cytochrome c release and typical morphological features of apoptosis, including chromatin condensation and DNA fragmentation. Knockdown of Nur77 rescued hydrogen peroxide-induced cardiomyocyte apoptosis. CONCLUSION: Translocation of Nur77 from the nucleus to the mitochondria in cardiomyocytes results in the loss of mitochondrial integrity and subsequent apoptosis in response to ischaemia/reperfusion injury. Our findings identify Nur77 as a novel mediator of cardiomyocyte apoptosis and warrants further investigation of mitochondrial Nur77 translocation as a mechanism to control cell death in the treatment of ischaemic heart diseases.


Assuntos
Apoptose/fisiologia , Mitocôndrias Cardíacas/fisiologia , Isquemia Miocárdica/patologia , Miócitos Cardíacos/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/fisiologia , Animais , Constrição , Feminino , Masculino , Camundongos , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Sprague-Dawley , Transfecção , Regulação para Cima
13.
Circ Res ; 106(7): 1265-74, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20203306

RESUMO

RATIONALE: Cardioprotective signaling mediates antiapoptotic actions through multiple mechanisms including maintenance of mitochondrial integrity. Pim-1 kinase is an essential downstream effector of AKT-mediated cardioprotection but the mechanistic basis for maintenance of mitochondrial integrity by Pim-1 remains unexplored. This study details antiapoptotic actions responsible for enhanced cell survival in cardiomyocytes with elevated Pim-1 activity. OBJECTIVE: The purpose of this study is to demonstrate that the cardioprotective kinase Pim-1 acts to inhibit cell death by preserving mitochondrial integrity in cardiomyocytes. METHODS AND RESULTS: A combination of biochemical, molecular, and microscopic analyses demonstrate beneficial effects of Pim-1 on mitochondrial integrity. Pim-1 protein level increases in the mitochondrial fraction with a corresponding decrease in the cytosolic fraction of myocardial lysates from hearts subjected to 30 minutes of ischemia followed by 30 minutes of reperfusion. Cardiac-specific overexpression of Pim-1 results in higher levels of antiapoptotic Bcl-X(L) and Bcl-2 compared to samples from normal hearts. In response to oxidative stress challenge, Pim-1 preserves the inner mitochondrial membrane potential. Ultrastructure of the mitochondria is maintained by Pim-1 activity, which prevents swelling induced by calcium overload. Finally, mitochondria isolated from hearts created with cardiac-specific overexpression of Pim-1 show inhibition of cytochrome c release triggered by a truncated form of proapoptotic Bid. CONCLUSION: Cardioprotective action of Pim-1 kinase includes preservation of mitochondrial integrity during cardiomyopathic challenge conditions, thereby raising the potential for Pim-1 kinase activation as a therapeutic interventional approach to inhibit cell death by antagonizing proapoptotic Bcl-2 family members that regulate the intrinsic apoptotic pathway.


Assuntos
Apoptose , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/enzimologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Animais Recém-Nascidos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Sobrevivência Celular , Células Cultivadas , Citocromos c/metabolismo , Modelos Animais de Doenças , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/ultraestrutura , Dilatação Mitocondrial , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/ultraestrutura , Estresse Oxidativo , Transporte Proteico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transfecção , Proteína bcl-X/metabolismo
14.
Circulation ; 120(21): 2077-87, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19901187

RESUMO

BACKGROUND: Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. METHODS AND RESULTS: Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. CONCLUSIONS: Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.


Assuntos
Engenharia Genética , Terapia Genética , Infarto do Miocárdio/terapia , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Infarto do Miocárdio/fisiopatologia , Proteínas Proto-Oncogênicas c-kit/análise
15.
Proc Natl Acad Sci U S A ; 105(37): 13889-94, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18784362

RESUMO

Pim-1 kinase exerts potent cardioprotective effects in the myocardium downstream of AKT, but the participation of Pim-1 in cardiac hypertrophy requires investigation. Cardiac-specific expression of Pim-1 (Pim-WT) or the dominant-negative mutant of Pim-1 (Pim-DN) in transgenic mice together with adenoviral-mediated overexpression of these Pim-1 constructs was used to delineate the role of Pim-1 in hypertrophy. Transgenic overexpression of Pim-1 protects mice from pressure-overload-induced hypertrophy relative to wild-type controls as evidenced by improved hemodynamic function, decreased apoptosis, increases in antihypertrophic proteins, smaller myocyte size, and inhibition of hypertrophic signaling after challenge. Similarly, Pim-1 overexpression in neonatal rat cardiomyocyte cultures inhibits hypertrophy induced by endothelin-1. On the cellular level, hearts of Pim-WT mice show enhanced incorporation of BrdU into myocytes and a hypercellular phenotype compared to wild-type controls after hypertrophic challenge. In comparison, transgenic overexpression of Pim-DN leads to dilated cardiomyopathy characterized by increased apoptosis, fibrosis, and severely depressed cardiac function. Furthermore, overexpression of Pim-DN leads to reduced contractility as evidenced by reduced Ca(2+) transient amplitude and decreased percentage of cell shortening in isolated myocytes. These data support a pivotal role for Pim-1 in modulation of hypertrophy by impacting responses on molecular, cellular, and organ levels.


Assuntos
Cardiomegalia/enzimologia , Cardiomegalia/patologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Animais , Animais Geneticamente Modificados , Aorta/enzimologia , Apoptose , Cardiomegalia/induzido quimicamente , Cardiomegalia/fisiopatologia , Células Cultivadas , Endotelina-1/farmacologia , Fibrose , Contração Muscular , Proteínas Proto-Oncogênicas c-pim-1/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA