Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6102-6111, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739578

RESUMO

Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.


Assuntos
Lesão Pulmonar Aguda , DNA , Nanoestruturas , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Camundongos , DNA/química , Administração por Inalação , Nanoestruturas/química , Espécies Reativas de Oxigênio/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Citocinas/metabolismo , Peptídeos/química , Nebulizadores e Vaporizadores , Peptídeos Penetradores de Células/química , Modelos Animais de Doenças , Lipopolissacarídeos , Sistemas de Liberação de Medicamentos , Células RAW 264.7
2.
Angew Chem Int Ed Engl ; 62(51): e202315093, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37906116

RESUMO

DNA nanostructures have played an important role in the development of novel drug delivery systems. Herein, we report a DNA origami-based CRISPR/Cas9 gene editing system for efficient gene therapy in vivo. In our design, a PAM-rich region precisely organized on the surface of DNA origami can easily recruit and load sgRNA/Cas9 complex by PAM-guided assembly and pre-designed DNA/RNA hybridization. After loading the sgRNA/Cas9 complex, the DNA origami can be further rolled up by the locking strands with a disulfide bond. With the incorporation of DNA aptamer and influenza hemagglutinin (HA) peptide, the cargo-loaded DNA origami can realize the targeted delivery and effective endosomal escape. After reduction by GSH, the opened DNA origami can release the sgRNA/Cas9 complex by RNase H cleavage to achieve a pronounced gene editing of a tumor-associated gene for gene therapy in vivo. This rationally developed DNA origami-based gene editing system presents a new avenue for the development of gene therapy.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Terapia Genética , DNA/genética
3.
ACS Omega ; 8(17): 15266-15275, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151566

RESUMO

MicroRNAs (miRNAs) are a family of conserved small noncoding RNAs whose expression is associated with many diseases, including cancer. Salivary miRNAs are gaining popularity as noninvasive diagnostic biomarkers for cancer and other systemic disorders, but their use is limited by their low abundance and complicated detection procedure. Herein, we present a novel self-assembly approach based on rolling circle amplification (RCA) and graphene oxide (GO) for the ultrasensitive detection of miRNA21 and miRNA16 (miRNA oral cancer biomarkers in human saliva). First, target miRNA hybridizes with the RCA template. In the presence of DNA polymerase, the RCA reaction is induced and sequences matching the template are generated. Then, a nicking enzyme cuts the long ssDNA product into tiny pieces to obtain the amplified products. The DNA-decorated GO sensor was fabricated by preabsorbing the ssDNA fluorescence-labeled probe on the GO surface, resulting in fluorescence quenching. The DNA-decorated GO sensor could detect the amplified product via the self-assembly of dsDNA, leading to the desorption and recovery of the fluorescence-labeled probe. Under optimal conditions, the proposed system exhibited ultrasensitive detection; the detection limits of miRNA16 and miRNA21 were 8.81 and 3.85 fM, respectively. It showed a wide range of detection between 10 fM and 100 pM for miRNA16 and between 10 fM and 1 nM for miRNA16. It demonstrated high selectivity, distinguishing between 1- and 3-mismatch nucleotides in target miRNA. Overall, our proposed DNA-decorated GO sensor can accurately detect the salivary miRNAs and may potentially be used for the diagnosis and screening of early-stage oral cancer.

4.
J Am Chem Soc ; 145(16): 9343-9353, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37070733

RESUMO

DNA origami has played an important role in various biomedical applications, including biosensing, bioimaging, and drug delivery. However, the function of the long DNA scaffold involved in DNA origami has yet to be fully exploited. Herein, we report a general strategy for the construction of a genetically encoded DNA origami by employing two complementary DNA strands of a functional gene as the DNA scaffold for gene therapy. In our design, the complementary sense and antisense strands can be directly folded into two DNA origami monomers by their corresponding staple strands. After hybridization, the assembled genetically encoded DNA origami with precisely organized lipids on the surface can function as the template for lipid growth. The lipid-coated and genetically encoded DNA origami can efficiently penetrate the cell membrane for successful gene expression. After decoration with the tumor-targeting group, the antitumor gene (p53) encoded DNA origami can elicit a pronounced upregulation of the p53 protein in tumor cells to achieve efficient tumor therapy. The targeting group-modified, lipid-coated, and genetically encoded DNA origami has mimicked the functions of cell surface ligands, cell membrane, and nucleus for communication, protection, and gene expression, respectively. This rationally developed combination of folding and coating strategies for genetically encoded DNA origami presents a new avenue for the development of gene therapy.


Assuntos
Nanoestruturas , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , DNA/genética , Sistemas de Liberação de Medicamentos , DNA Complementar , Lipídeos , Conformação de Ácido Nucleico , Nanotecnologia/métodos
5.
Small Methods ; 7(5): e2201518, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36651129

RESUMO

The past few decades have witnessed the evolving paradigm for cancer therapy from nonspecific cytotoxic agents to selective, mechanism-based therapeutics, especially immunotherapy. In particular, the integration of nanomaterials with immunotherapy is proven to improve the therapeutic outcome and minimize off-target toxicity in the treatment. As a novel nanomaterial, DNA-based self-assemblies featuring uniform geometries, feasible modifications, programmability, surface addressability, versatility, and intrinsic biocompatibility, are extensively exploited for innovative and effective cancer immunotherapy. In this review, the successful employment of DNA nanoplatforms for cancer immunotherapy, including the delivery of immunogenic cell death inducers, adjuvants and vaccines, immune checkpoint blockers as well as the application in immune cell engineering and adoptive cell therapy is summarized. The remaining challenges and future perspectives regarding the pharmacokinetics/pharmacodynamics, in vivo fate and immunogenicity of DNA materials, and the design of intelligent DNA nanomedicine for individualized cancer immunotherapy are also discussed.


Assuntos
Antineoplásicos , Nanoestruturas , Neoplasias , Humanos , Neoplasias/terapia , Imunoterapia , Nanoestruturas/uso terapêutico , Nanomedicina
6.
Nanoscale ; 14(26): 9369-9378, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35726974

RESUMO

Targeted delivery of therapeutic drugs is essential for precise treatment of various diseases to reduce possible serious side-effects. A screened DNA aptamer has been widely developed for active targeting delivery. Herein, we report a facile strategy for the construction of a branched DNA aptamer cluster-based nanoplatform for efficiently targeted drug delivery. In our design, the terminal-modified DNA aptamer can be covalently conjugated to form a branched aptamer cluster by click reaction easily. The branched aptamer cluster-modified DNA tetrahedron (TET) demonstrates highly targeted cellular uptake with the modification of only one site. After loading the chemotherapeutic drug (doxorubicin, DOX), the DNA aptamer cluster-based nanoplatform elicits a remarkable and selective inhibition of tumor cell proliferation by much-enhanced targeted delivery. This covalently conjugated branched DNA aptamer cluster-based nanoplatform provides a new strategy for the development of targeted drug delivery.


Assuntos
Antineoplásicos , Aptâmeros de Nucleotídeos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
7.
Innovation (Camb) ; 3(2): 100217, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35243471

RESUMO

Based on predictable, complementary base pairing, DNA can be artificially pre-designed into versatile DNA nanostructures of well-defined shapes and sizes. With excellent addressability and biocompatibility, DNA nanostructures have been widely employed in biomedical research, such as bio-sensing, bio-imaging, and drug delivery. With the development of the chemical biology of nucleic acid, chemically modified nucleic acids are also gradually developed to construct multifunctional DNA nanostructures. In this review, we summarize the recent progress in the construction and functionalization of chemically modified DNA nanostructures. Their applications in the delivery of chemotherapeutic drugs and nucleic acid drugs are highlighted. Furthermore, the remaining challenges and future prospects in drug delivery by chemically modified DNA nanostructures are discussed.

8.
Angew Chem Int Ed Engl ; 61(22): e202114706, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35301778

RESUMO

Here, we describe a DNA circuit-aided, origami nanodevice-based plasmonic system, which performs DNA-regulated, cascade amplification of faint chemical/biological signals. In this system, two gold-nanorods (GNRs) are co-assembled onto a DNA lock-containing, tweezer-like DNA origami template. Logic circuits serve as recognition and amplification elements for specific messengers, producing DNA keys for driving conformational changes of the plasmonic nanodevices. In the presence of input signals including nucleic acids, adenosines, chiral tyrosinamides or specific receptors expressed by tumor cells, the plasmonic nanodevices can be activated to perform dynamic structural motions, reporting robust responses via plasmonic circular dichroism (CD) spectral changes. This DNA nanodevice-based system provides a different design to enrich the strategies for constructing synthetic nanomachines, enabling the customized bottom-up nanostructure construction for sensitive biological signaling.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanotubos , Dicroísmo Circular , DNA/química , Ouro/química , Nanoestruturas/química , Nanotubos/química
9.
ChemMedChem ; 17(1): e202100635, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34729948

RESUMO

DNA origami nanotechnology has provided predictable static nanoarchitectures and dynamic nanodevices with rationally designed geometries, precise spatial addressability, and marked biocompatibility. Multiple functional elements, such as peptides, aptamers, nanoparticles, fluorescence probes, and proteins, etc. can be easily integrated into DNA origami templates with nanoscale precision, leading to a variety of promising applications. Triggered by chemical/physical stimuli, dynamic DNA origami nanodevices can switch between defined conformations or translocate autonomously, providing powerful tools for intelligent biosensing and drug delivery. In this minireview, we summarize the recent progress of dynamic DNA origami nanodevices with desired reconfigurability and feasibility to perform multiple biological tasks. We introduce varieties of DNA nanodevices that can be controlled by different molecular triggers and external stimuli. Subsequently, we highlight the recent advances in employing DNA nanodevices as biosensors and drug delivery vehicles. At last, future possibilities and perspectives are also discussed.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , DNA/metabolismo , Corantes Fluorescentes/metabolismo , Nanopartículas/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Aptâmeros de Nucleotídeos/química , DNA/química , Corantes Fluorescentes/química , Nanopartículas/química , Nanoestruturas/química , Nanotecnologia , Peptídeos/química , Proteínas/química
10.
Nanoscale ; 13(30): 12848-12853, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34477769

RESUMO

Nucleic acid nanostructures are promising biomaterials for the delivery of homologous gene therapy drugs. Herein, we report a facile strategy for the construction of target mRNA (scaffold) and antisense (staple strands) co-assembled RNA/DNA hybrid "origami" for efficient gene therapy. In our design, the mRNA was folded into a chemically well-defined nanostructure through RNA-DNA hybridization with high yield. After the incorporation of an active cell-targeting aptamer, the tailored RNA/DNA hybrid origami demonstrated efficient cellular uptake and controllable release of antisenses in response to intracellular RNase H digestion. The biocompatible RNA/DNA origami (RDO) elicited a noticeable inhibition of cell proliferation based on the silencing of the tumor-associated gene polo-like kinase 1 (PLK1). This RDO-based nanoplatform provides a novel strategy for the further development of gene therapy.


Assuntos
Nanoestruturas , RNA , DNA/genética , Terapia Genética , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA/genética
11.
Nat Commun ; 12(1): 2536, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953198

RESUMO

Molecular profiling of circulating extracellular vesicles (EVs) provides a promising noninvasive means to diagnose, monitor, and predict the course of metastatic breast cancer (MBC). However, the analysis of EV protein markers has been confounded by the presence of soluble protein counterparts in peripheral blood. Here we use a rapid, sensitive, and low-cost thermophoretic aptasensor (TAS) to profile cancer-associated protein profiles of plasma EVs without the interference of soluble proteins. We show that the EV signature (a weighted sum of eight EV protein markers) has a high accuracy (91.1 %) for discrimination of MBC, non-metastatic breast cancer (NMBC), and healthy donors (HD). For MBC patients undergoing therapies, the EV signature can accurately monitor the treatment response across the training, validation, and prospective cohorts, and serve as an independent prognostic factor for progression free survival in MBC patients. Together, this work highlights the potential clinical utility of EVs in management of MBC.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Vesículas Extracelulares/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Estudos Prospectivos , Taxa de Sobrevida , Tetraspanina 30/metabolismo
12.
ACS Appl Mater Interfaces ; 13(18): 20974-20981, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33909408

RESUMO

The CRISPR/Cas9 gene-editing system has become a promising strategy for tumor therapy with its powerful oncogene-editing ability. However, the efficient delivery of sgRNA/Cas9 complex into target tumor cells remains a challenge. Herein, we report a facile strategy for the construction of an sgRNA/Cas9 complex co-assembled nanoplatform for targeted gene editing and combined tumor therapy. In our design, the TAT peptide and thiolated DNA linker functionalized gold nanorod can efficiently load the sgRNA/Cas9 complex through the hybridization between the 3' overhang of sgRNA and the DNA linker. Due to the integration of an active cell targeting group (aptamer) and nuclear targeting peptide (TAT), the multifunctional nanoplatform can elicit the targeted cellular internalization and efficient nuclear targeting transportation to realize endogenous RNase H activated gene editing of the tumor-associated gene polo-like kinase 1 (PLK1). With mild photothermal treatment, this sgRNA/Cas9 complex loaded nanoplatform achieved efficient inhibition of tumor cell proliferation. This multifunctional nanocarrier provides a new strategy for the development of combined tumor therapy.


Assuntos
Edição de Genes , Ouro/química , Nanotubos/química , Neoplasias/terapia , Ácidos Nucleicos/química , Sistemas CRISPR-Cas , Proliferação de Células , Terapia Combinada , Humanos , Células MCF-7 , Microscopia Confocal , Neoplasias/patologia
13.
ACS Appl Bio Mater ; 4(10): 7701-7707, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35006686

RESUMO

DNA-based nanogels have attracted much attention in the biomedical research field. Herein, we report a universal strategy for the fabrication of an aptamer-modified DNA tetrahedron (TET)-based nanogel for combined chemo/gene therapy of multidrug-resistant tumors. In our design, terminal extended antisense oligonucleotides (ASOs) are employed as the linker to co-assemble with two kinds of three-vertex extended TETs for the efficient construction of the DNA-based nanogel. With the incorporation of an active cell-targeting group (aptamer in one vertex of TET) and a controlled-release element (disulfide bridges in the terminals of ASOs), the functional DNA-based nanogel can achieve targeted cellular internalization and stimuli-responsive release of embedded ASOs. After loading with the chemodrug (doxorubicin (DOX), an intercalator of double-stranded DNA), the multifunctional DOX/Nanogel elicits efficient chemo/gene therapy of human MCF-7 breast tumor cells with DOX resistance (MCF-7R). This aptamer-modified DNA tetrahedron-based nanogel provides another strategy for intelligent drug delivery and combined tumor therapy.


Assuntos
DNA , Doxorrubicina , Doxorrubicina/farmacologia , Terapia Genética , Humanos , Nanogéis , Oligonucleotídeos Antissenso , Polietilenoglicóis , Polietilenoimina
14.
Angew Chem Int Ed Engl ; 60(5): 2594-2598, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089613

RESUMO

Using the DNA origami technique, we constructed a DNA nanodevice functionalized with small interfering RNA (siRNA) within its inner cavity and the chemotherapeutic drug doxorubicin (DOX), intercalated in the DNA duplexes. The incorporation of disulfide bonds allows the triggered mechanical opening and release of siRNA in response to intracellular glutathione (GSH) in tumors to knockdown genes key to cancer progression. Combining RNA interference and chemotherapy, the nanodevice induced potent cytotoxicity and tumor growth inhibition, without observable systematic toxicity. Given its autonomous behavior, exceptional designability, potent antitumor activity and marked biocompatibility, this DNA nanodevice represents a promising strategy for precise drug design for cancer therapy.


Assuntos
Terapia Combinada/métodos , DNA/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos
15.
Angew Chem Int Ed Engl ; 60(4): 1853-1860, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33058467

RESUMO

Chemically modified DNA has been widely developed to fabricate various nucleic acid nanostructures for biomedical applications. Herein, we report a facile strategy for construction of branched antisense DNA and small interfering RNA (siRNA) co-assembled nanoplatform for combined gene silencing in vitro and in vivo. In our design, the branched antisense can efficiently capture siRNA with 3' overhangs through DNA-RNA hybridization. After being equipped with an active targeting group and an endosomal escape peptide by host-guest interaction, the tailored nucleic acid nanostructure functions efficiently as both delivery carrier and therapeutic cargo, which is released by endogenous RNase H digestion. The multifunctional nucleic acid nanosystem elicits an efficient inhibition of tumor growth based on the combined gene silencing of the tumor-associated gene polo-like kinase 1 (PLK1). This biocompatible nucleic acid nanoplatform presents a new strategy for the development of gene therapy.


Assuntos
Inativação Gênica , Terapia Genética , Nanopartículas/química , Neoplasias/terapia , RNA Antissenso/química , RNA Interferente Pequeno/química , Animais , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/patologia , Estudo de Prova de Conceito , Interferência de RNA
17.
Nat Mater ; 20(3): 421-430, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32895504

RESUMO

A major challenge in cancer vaccine therapy is the efficient delivery of antigens and adjuvants to stimulate a controlled yet robust tumour-specific T-cell response. Here, we describe a structurally well defined DNA nanodevice vaccine generated by precisely assembling two types of molecular adjuvants and an antigen peptide within the inner cavity of a tubular DNA nanostructure that can be activated in the subcellular environment to trigger T-cell activation and cancer cytotoxicity. The integration of low pH-responsive DNA 'locking strands' outside the nanostructures enables the opening of the vaccine in lysosomes in antigen-presenting cells, exposing adjuvants and antigens to activate a strong immune response. The DNA nanodevice vaccine elicited a potent antigen-specific T-cell response, with subsequent tumour regression in mouse cancer models. Nanodevice vaccination generated long-term T-cell responses that potently protected the mice against tumour rechallenge.


Assuntos
Vacinas Anticâncer/imunologia , Melanoma Experimental/terapia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Apresentação de Antígeno , Bacteriófago M13/genética , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Testes Imunológicos de Citotoxicidade , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Metástase Linfática/prevenção & controle , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Vacinas de DNA/administração & dosagem
18.
Nat Mater ; 20(3): 395-402, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33257794

RESUMO

Natural oxidases mainly rely on cofactors and well-arranged amino acid residues for catalysing electron-transfer reactions but suffer from non-recovery of their activity upon externally induced protein unfolding. However, it remains unknown whether residues at the active site can catalyse similar reactions in the absence of the cofactor. Here, we describe a series of self-assembling, histidine-rich peptides, as short as a dipeptide, with catalytic function similar to that of haem-dependent peroxidases. The histidine residues of the peptide chains form periodic arrays that are able to catalyse H2O2 reduction reactions efficiently through the formation of reactive ternary complex intermediates. The supramolecular catalyst exhibiting the highest activity could be switched between inactive and active states without loss of activity for ten cycles of heating/cooling or acidification/neutralization treatments, demonstrating the reversible assembly/disassembly of the active residues. These findings may aid the design of advanced biomimetic catalytic materials and provide a model for primitive cofactor-free enzymes.


Assuntos
Materiais Biomiméticos/química , Nanoestruturas/química , Oxirredutases/química , Peptídeos/química , Catálise , Dicroísmo Circular , Coenzimas , Cristalografia por Raios X , Histidina/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/química , Modelos Moleculares , Oxirredução , Oxirredutases/metabolismo , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Chembiochem ; 21(17): 2408-2418, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227615

RESUMO

Nanomaterials with enzyme-mimicking behavior (nanozymes) have attracted a lot of research interest recently. In comparison to natural enzymes, nanozymes hold many advantages, such as good stability, ease of production and surface functionalization. As the catalytic mechanism of nanozymes is gradually revealed, the application fields of nanozymes are also broadly explored. Beyond traditional colorimetric detection assays, nanozymes have been found to hold great potential in a variety of biomedical fields, such as tumor theranostics, antibacterial, antioxidation and bioorthogonal reactions. In this review, we summarize nanozymes consisting of different nanomaterials. In addition, we focus on the catalytic performance of nanozymes in biomedical applications. The prospects and challenges in the practical use of nanozymes are discussed at the end of this Minireview.


Assuntos
Pesquisa Biomédica , Nanoestruturas/química , Animais , Catálise , Colorimetria , Humanos
20.
ACS Appl Bio Mater ; 3(5): 2854-2860, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35025332

RESUMO

A versatile DNA bipyramid nanostructure is assembled as a tumor-targeted, dual-modal nanoprobe for in vivo imaging. Magnetic resonance contrast agents (Gd-DOTA), fluorescence imaging molecules (Dylight800), and tumor-targeting moieties (anti-EGFR aptamers) were precisely organized on the DNA bipyramid platform. DNA bipyramids coated by polyethylene glycol-polylysine copolymer showed enhanced resistance against digestion in serum and prolonged circulation time in vivo. The multifunctional DNA bipyramid improved codelivery of magnetic resonance/fluorescence imaging (MR/FI) contrast agents to triple-negative breast tumors, realizing noninvasive tumor imaging without observable systemic toxicity. Our rationally designed DNA-based platform will prove powerful to develop customized molecular probes for cancer diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA