Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(10): 4334-4347, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38709204

RESUMO

Drug synergy therapy is a promising strategy for cancer treatment. However, the extensive variety of available drugs and the time-intensive process of determining effective drug combinations through clinical trials pose significant challenges. It requires a reliable method for the rapid and precise selection of drug synergies. In response, various computational strategies have been developed for predicting drug synergies, yet the exploitation of heterogeneous biological network features remains underexplored. In this study, we construct a heterogeneous graph that encompasses diverse biological entities and interactions, utilizing rich data sets from sources, such as DrugCombDB, PubChem, UniProt, and cancer cell line encyclopedia (CCLE). We initialize node feature representations and introduce a novel virtual node to enhance drug representation. Our proposed method, the heterogeneous graph attention network for drug-drug synergy prediction (HANSynergy), has been experimentally validated to demonstrate that the heterogeneous graph attention network can extract key node features, efficiently harness the diversity of information, and further enhance network functionality through the incorporation of a multihead attention mechanism. In the comparative experiment, the highest accuracy (Acc) and area under the curve (AUC) are 0.877 and 0.947, respectively, in DrugCombDB_early data set, demonstrating the superiority of HANSynergy over the competing methods. Moreover, protein-protein interactions are important in understanding the mechanism of action of drugs. The heterogeneous attention mechanism facilitates protein-protein interaction analysis. By analyzing the changes of attention weight before and after heterogeneous network training, we investigated proteins that may be associated with drug combinations. Additionally, case studies align our findings with existing research, underscoring the potential of HANSynergy in drug synergy prediction. This advancement not only contributes to the burgeoning field of drug synergy prediction but also holds the potential to provide valuable insights and uncover new drug synergies for combating cancer.


Assuntos
Sinergismo Farmacológico , Humanos , Bases de Dados de Produtos Farmacêuticos , Antineoplásicos/farmacologia , Antineoplásicos/química , Biologia Computacional/métodos
2.
Phytomedicine ; 120: 155001, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37619321

RESUMO

BACKGROUND: Glycosides are the pharmacodynamic substances of Buyang Huanwu Decoction (BYHWD) and they exert a protective effect in the brain by inhibiting neuronal pyroptosis of cerebral ischemia-reperfusion (CIR). However, the mechanism by which glycosides regulate neuronal pyroptosis of CIR is still unclear. PURPOSE: A significant part of this study aimed to demonstrate whether glycosides have an anti-pyroptotic effect on CIR by nuclear factor erythroid 2-related factor (Nrf2)-mediated antioxidative mechanism. METHODS: Rats were used in vivo models of middle cerebral artery occlusion and reperfusion (MCAO/R). Neuroprotective effect of glycosides after Nrf2 inhibiting was observed by nerve function score, Nissl staining, Nrf2 fluorescence staining and pyroptotic proteins detection. SH-SY5Y cells were used in vitro models of oxygen-glucose deprivation/reperfusion (OGD/R). Glycosides was evaluated for their effects by measuring cell morphology, survival rate, lactate dehydrogenase (LDH) rate and expression of pyroptotic proteins. Nrf2 si-RNA 54-1 interference with lentivirus was used to create silenced Nrf2 SH-SY5Y cells (si-Nrf2-SH-SY5Y). Glycosides were evaluated on si-Con-SH-SY5Y and si-Nrf2-SH-SY5Y cells based on the expression of Nrf2 signaling pathway, pyroptotic proteins and cell damage manifestation. RESULTS: In vivo, glycosides significantly promoted the fluorescence level of nuclear Nrf2, added more Nissl bodies, reduced neurological function scores and inhibited the pyroptotic proteins level. In vitro, glycosides significantly repaired the morphological damage of cells, promoted the survival rate, reduced the LDH rate, inhibited the pyroptosis. Moreover, antioxidant activity of glycosides was enhanced via Nrf2 activation. Both Nrf2 blocking in vivo and Nrf2 silencing in vitro significantly weakened the pyroptosis inhibitory and neuroprotective effects of glycosides. CONCLUSION: These results suggested for the first time that glycosides inhibited neuronal pyroptosis by regulating the Nrf2-mediated antioxidant stress pathway, thereby exerting brain protection of CIR. As a result of this study, This study improved understanding of the pharmacodynamics and mechanism of BYHWD, as well as providing a Traditional Chinese Medicine (TCM) treatment strategy for CIR .


Assuntos
Isquemia Encefálica , Neuroblastoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Piroptose , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Neuroblastoma/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Transdução de Sinais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA