Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38785131

RESUMO

OBJECTIVE: This study aims to investigate the mechanism of Huangqin Tang in treating liver cancer. METHODS: Active ingredients and corresponding targets of Huangqin Tang were obtained from the Traditional Chinese Medicine Systems Pharmacology Database. Differentially expressed genes in liver cancer were identified from mRNA expression data. A protein-protein interaction (PPI) network was constructed using differentially expressed genes and Huangqin Tang targets. Random walk with restart (RWR) analysis was performed on the PPI network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted. A drug-active ingredient-gene interaction network was established, and molecular docking and molecular dynamics simulations were performed. Finally, the stability of binding between CDK1 and oroxylin was tested according to cellular thermal shift assay (CETSA). RESULTS: 160 active ingredients, 239 targets, and 1093 differentially expressed genes were identified. RWR analysis identified 10 potential targets for liver cancer. Enrichment analysis revealed protein kinase regulator activity and Steroid hormone biosynthesis as significant pathways. Molecular docking suggested a stable complex between oroxylin A and CDK1. CETSA demonstrated that the combination of oroxylin A and CDK1 increased the stability of CDK1, and the combination efficiency was high. CONCLUSION: Huangqin Tang may treat liver cancer by targeting CDK1 with oroxylin A. Protein kinase regulator activity and Steroid hormone biosynthesis pathways may play a role in liver cancer treatment with Huangqin Tang. This study provides insight into the mechanistic basis of Huangqin Tang for liver cancer treatment.

2.
J Chem Inf Model ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745385

RESUMO

Human calcitonin (hCT) regulates calcium-phosphorus metabolism, but its amyloid aggregation disrupts physiological activity, increases thyroid carcinoma risk, and hampers its clinical use for bone-related diseases like osteoporosis and Paget's disease. Improving hCT with targeted modifications to mitigate amyloid formation while maintaining its function holds promise as a strategy. Understanding how each residue in hCT's amyloidogenic core affects its structure and aggregation dynamics is crucial for designing effective analogues. Mutants F16L-hCT and F19L-hCT, where Phe residues in the core are replaced with Leu as in nonamyloidogenic salmon calcitonin, showed different aggregation kinetics. However, the molecular effects of these substitutions in hCT are still unclear. Here, we systematically investigated the folding and self-assembly conformational dynamics of hCT, F16L-hCT, and F19L-hCT through multiple long-time scale independent atomistic discrete molecular dynamics (DMD) simulations. Our results indicated that the hCT monomer primarily assumed unstructured conformations with dynamic helices around residues 4-12 and 14-21. During self-assembly, the amyloidogenic core of hCT14-21 converted from dynamic helices to ß-sheets. However, substituting F16L did not induce significant conformational changes, as F16L-hCT exhibited characteristics similar to those of wild-type hCT in both monomeric and oligomeric states. In contrast, F19L-hCT exhibited substantially more helices and fewer ß-sheets than did hCT, irrespective of their monomers or oligomers. The substitution of F19L significantly enhanced the stability of the helical conformation for hCT14-21, thereby suppressing the helix-to-ß-sheet conformational conversion. Overall, our findings elucidate the molecular mechanisms underlying hCT aggregation and the effects of F16L and F19L substitutions on the conformational dynamics of hCT, highlighting the critical role of F19 as an important target in the design of amyloid-resistant hCT analogs for future clinical applications.

3.
Adv Sci (Weinh) ; : e2310314, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582521

RESUMO

Understanding the environmental health and safety of nanomaterials (NanoEHS) is essential for the sustained development of nanotechnology. Although extensive research over the past two decades has elucidated the phenomena, mechanisms, and implications of nanomaterials in cellular and organismal models, the active remediation of the adverse biological and environmental effects of nanomaterials remains largely unexplored. Inspired by recent developments in functional amyloids for biomedical and environmental engineering, this work shows their new utility as metallothionein mimics in the strategically important area of NanoEHS. Specifically, metal ions released from CuO and ZnO nanoparticles are sequestered through cysteine coordination and electrostatic interactions with beta-lactoglobulin (bLg) amyloid, as revealed by inductively coupled plasma mass spectrometry and molecular dynamics simulations. The toxicity of the metal oxide nanoparticles is subsequently mitigated by functional amyloids, as validated by cell viability and apoptosis assays in vitro and murine survival and biomarker assays in vivo. As bLg amyloid fibrils can be readily produced from whey in large quantities at a low cost, the study offers a crucial strategy for remediating the biological and environmental footprints of transition metal oxide nanomaterials.

4.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1621-1631, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621947

RESUMO

Network pharmacology was employed to probe into the mechanism of Fushen Granules in treating peritoneal dialysis-rela-ted peritonitis(PDRP) in rats. The main active components of Fushen Granules were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and their targets were predicted. PDRP-related targets were retrieved from DisGeNET and other databases. The common targets shared by the drug and the disease were identified by the online tool, and protein-protein interaction(PPI) network of the common targets. The obtained 276 common targets were imported into DAVID for GO function enrichment and KEGG pathway enrichment. The main signaling pathway of Fushen Granules in the treatment of PDRP was predicted as Toll-like receptor 4(TLR4)/nuclear factor(NF)-κB. The rat model of uremia was induced by 5/6 nephrectomy. From two weeks after operation, the rat model of peritoneal dialysis(PD) was established by intraperitoneal injection of 20 mL dialysate with 1.25% glucose every day. The sham operation group and model group received 2 mL normal saline by gavage every day. The rats in Fushen Gra-nules groups were administrated with 2 mL solutions of low-(0.54 g·kg~(-1)), medium-(1.08 g·kg~(-1)) and high-dose(2.16 g·kg~(-1)) Fushen Granules every day. The bifico group received 2 mL(113.4 mg·kg~(-1)) of bifico solution every day. At the end of the 8th week, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in each group were measured. The serum levels of hypersensitive C reactive protein(hs-CRP), tumor necrosis factor(TNF)-α, and interleukin(IL)-6 were measured, and the pathological changes in the colon tissue were observed by hematoxylin-eosin(HE) staining. The serum levels of lipopolysaccharide(LPS) and lipopolysaccharide-binding protein(LBP) of rats were measured, and the expression levels of LBP, TLR4, NF-κB p65, inhibitor of κB kinase α(IκBα), TNF-α, and IL-1ß in the colon tissue were determined. Compared with sham operation group, the model group had abnormal structure of all layers of colon tissue, sparse and shorter intestinal villi, visible edema in mucosal layer, wider gap, obvious local inflammatory cell infiltration, significantly decreased body weight(P<0.01), and significantly increased kidney function index(Scr, BUN) content(P<0.01). Serum levels of inflammatory cytokines(hs-CRP, TNF-α, IL-6), LPS and LBP were significantly increased(P<0.01), protein expressions of LBP, TLR4, NF-κB p65, TNF-α and IL-1ß were significantly increased(P<0.01), and protein expressions of IκBα were significantly decreased(P<0.01). Compared with model group, intestinal villi damage in colonic tissue of rats in low-, medium-and high-dose Fushen Granules groups and bifico group were alleviated to different degrees, edema in submucosa was alleviated, space was narrowed, and inflammatory cell infiltration in lamina propria was reduced. The contents of renal function index(Scr, BUN) and serum inflammatory factors(hs-CRP, TNF-α, IL-6) were significantly decreased(P<0.05 or P<0.01) in medium-and high-dose Fushen Granules groups and bifico group(P<0.05 or P<0.01). Serum LPS and LBP contents in Fushen Granules group and bifico group were significantly decreased(P<0.01), protein expressions of LBP, TLR4, NF-κB p65, TNF-α and IL-1ß in Fushen Granules group were significantly decreased(P<0.05 or P<0.01), and protein expressions of IκBα were significantly increased(P<0.01). The expression of LBP protein in bifico group was significantly decreased(P<0.01). The results suggest that Fushen Granules can protect the residual renal function of PD rats, reduce the inflammatory response, and protect the colon tissue. Based on network pharmacology, TLR4/NF-κB pathway may be the main signaling pathway of Fushen granule in the treatment of PDRP. The results showed that Fushen Granules could improve intestinal inflammation and protect intestinal barrier to prevent PDRP by regulating the expression of key factors in TLR4/NF-κB pathway in colon of PD rats.


Assuntos
Experimentação Animal , Diálise Peritoneal , Peritonite , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Farmacologia em Rede , Fator de Necrose Tumoral alfa/metabolismo , Proteína C-Reativa , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Interleucina-6 , Lipopolissacarídeos , Peritonite/tratamento farmacológico , Diálise Peritoneal/efeitos adversos , Edema
5.
Biophys Chem ; 309: 107235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608617

RESUMO

The misfolding and aggregation of human islet amyloid polypeptide (hIAPP), also known as amylin, have been implicated in the pathogenesis of type 2 diabetes (T2D). Heat shock proteins, specifically, heat shock cognate 70 (Hsc70), are molecular chaperones that protect against hIAPP misfolding and inhibits its aggregation. Nevertheless, there is an incomplete understanding of the mechanistic interactions between Hsc70 domains and hIAPP, thus limiting their potential therapeutic role in diabetes. This study investigates the inhibitory capacities of different Hsc70 variants, aiming to identify the structural determinants that strike a balance between efficacy and cytotoxicity. Our experimental findings demonstrate that the ATPase activity of Hsc70 is not a pivotal factor for inhibiting hIAPP misfolding. We underscore the significance of the C-terminal substrate-binding domain of Hsc70 in inhibiting hIAPP aggregation, emphasizing that the removal of the lid subdomain diminishes the inhibitory effect of Hsc70. Additionally, we employed atomistic discrete molecular dynamics simulations to gain deeper insights into the interaction between Hsc70 variants and hIAPP. Integrating both experimental and computational findings, we propose a mechanism by which Hsc70's interaction with hIAPP monomers disrupts protein-protein connections, primarily by shielding the ß-sheet edges of the Hsc70-ß-sandwich. The distinctive conformational dynamics of the alpha helices of Hsc70 potentially enhance hIAPP binding by obstructing the exposed edges of the ß-sandwich, particularly at the ß5-ß8 region along the alpha helix interface. This, in turn, inhibits fibril growth, and similar results were observed following hIAPP dimerization. Overall, this study elucidates the structural intricacies of Hsc70 crucial for impeding hIAPP aggregation, improving our understanding of the potential anti-aggregative properties of molecular chaperones in diabetes treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas de Choque Térmico HSC70 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Resposta ao Choque Térmico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo
6.
Mar Drugs ; 22(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38393028

RESUMO

Oxidative stress, which damages cellular components and causes mitochondrial dysfunction, occurs in a variety of human diseases, including neurological disorders. The clearance of damaged mitochondria via mitophagy maintains the normal function of mitochondria and facilitates cell survival. Astaxanthin is an antioxidant known to have neuroprotective effects, but the underlying mechanisms remain unclear. This study demonstrated that astaxanthin inhibited H2O2-induced apoptosis in SH-SY5Y cells by ameliorating mitochondrial damage and enhancing cell survival. H2O2 treatment significantly reduced the levels of activated Akt and mTOR and induced mitophagy, while pretreatment with astaxanthin prevented H2O2-induced inhibition of Akt and mTOR and attenuated H2O2-induced mitophagy. Moreover, the inhibition of Akt attenuated the protective effect of astaxanthin against H2O2-induced cytotoxicity. Taken together, astaxanthin might inhibit H2O2-induced apoptosis by protecting mitochondrial function and reducing mitophagy. The results also indicate that the Akt/mTOR signaling pathway was critical for the protection of astaxanthin against H2O2-induced cytotoxicity. The results from the present study suggest that astaxanthin can reduce neuronal oxidative injury and may have the potential to be used for preventing neurotoxicity associated with neurodegenerative diseases.


Assuntos
Neuroblastoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peróxido de Hidrogênio/toxicidade , Mitofagia , Neuroblastoma/tratamento farmacológico , Apoptose , Estresse Oxidativo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Xantofilas
7.
Genomics ; 116(2): 110804, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307485

RESUMO

Litchi (Litchi chinensis Sonn.) is a valuable subtropical fruit tree with high-quality fruit. However, its economic benefits and sustainable development are restrained by a number of challenges. One major challenge is the lack of extremely early and late maturing high-quality varieties due to limited availability of varieties suitable for commercial cultivation and outdated breeding methods, resulting in an imbalanced supply and low price of litchi. Flowering time is a crucial genetic factor influencing the maturation period of litchi. Our previous research has highlighted the pivotal role of the LcFT1 gene in regulating the flowering time of litchi and identified a gene associated with LcFT1 (named as LcSOC1) based on RNA-Seq and weight gene co-expression network (WGCNA) analysis. This study further investigated the function of LcSOC1. Subcellular localization analysis revealed that LcSOC1 is primarily localized in the nucleus, where it acts as a transcription factor. LcSOC1 overexpression in Nicotiana tabacum and Arabidopsis thaliana resulted in significant early flowering. Furthermore, LcSOC1 was found to be expressed in various tissues, with the highest expression in mature leaves. Analysis of spatial and temporal expression patterns of LcSOC1 in litchi varieties with different flowering time under low temperature treatment and across an annual cycle demonstrated that LcSOC1 is responsive to low temperature induction. Interestingly, early maturing varieties exhibited higher sensitivity to low temperature, with significantly premature induction of LcSOC1 expression relative to late maturing varieties. Activation of LcSOC1 triggered the transition of litchi into the flowering phase. These findings demonstrate that LcSOC1 plays a pivotal role in regulating the flowering process and determining the flowering time in litchi. Overall, this study provides theoretical guidance and important target genes for molecular breeding to regulate litchi production period.


Assuntos
Litchi , Litchi/genética , Litchi/metabolismo , Frutas/genética , Melhoramento Vegetal , Folhas de Planta/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
8.
Plant Commun ; : 100852, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38409783

RESUMO

Climate change is resulting in more frequent and rapidly changing temperatures at both extremes that severely affect the growth and production of plants, particularly crops. Oxidative stress caused by high temperatures is one of the most damaging factors for plants. However, the role of hydrogen peroxide (H2O2) in modulating plant thermotolerance is largely unknown, and the regulation of photorespiration essential for C3 species remains to be fully clarified. Here, we report that heat stress promotes H2O2 accumulation in chloroplasts and that H2O2 stimulates sulfenylation of the chloroplast-localized photorespiratory enzyme 2-phosphoglycolate phosphatase 1 (PGLP1) at cysteine 86, inhibiting its activity and promoting the accumulation of the toxic metabolite 2-phosphoglycolate. We also demonstrate that PGLP1 has a positive function in plant thermotolerance, as PGLP1 antisense lines have greater heat sensitivity and PGLP1-overexpressing plants have higher heat-stress tolerance than the wild type. Together, our results demonstrate that heat-induced H2O2 in chloroplasts sulfenylates and inhibits PGLP1 to modulate plant thermotolerance. Furthermore, targeting CATALASE2 to chloroplasts can largely prevent the heat-induced overaccumulation of H2O2 and the sulfenylation of PGLP1, thus conferring thermotolerance without a plant growth penalty. These findings reveal that heat-induced H2O2 in chloroplasts is important for heat-caused plant damage.

10.
Adv Sci (Weinh) ; 11(13): e2306884, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247172

RESUMO

Sepsis poses a significant challenge in clinical management. Effective strategies targeting iron restriction, toxin neutralization, and inflammation regulation are crucial in combating sepsis. However, a comprehensive approach simultaneously targeting these multiple processes has not been established. Here, an engineered apoptotic extracellular vesicles (apoEVs) derived from macrophages is developed and their potential as multifunctional agents for sepsis treatment is investigated. The extensive macrophage apoptosis in a Staphylococcus aureus-induced sepsis model is discovered, unexpectedly revealing a protective role for the host. Mechanistically, the protective effects are mediated by apoptotic macrophage-released apoEVs, which bound iron-containing proteins and neutralized α-toxin through interaction with membrane receptors (transferrin receptor and A disintegrin and metalloprotease 10). To further enhance therapeutic efficiency, apoEVs are engineered by incorporating mesoporous silica nanoparticles preloaded with anti-inflammatory agents (microRNA-146a). These engineered apoEVs can capture iron and neutralize α-toxin with their natural membrane while also regulating inflammation by releasing microRNA-146a in phagocytes. Moreover, to exploit the microcosmic movement and rotation capabilities, erythrocytes are utilized to drive the engineered apoEVs. The erythrocytes-driven engineered apoEVs demonstrate a high capacity for toxin and iron capture, ultimately providing protection against sepsis associated with high iron-loaded conditions. The findings establish a multifunctional agent that combines natural and engineered antibacterial strategies.


Assuntos
Vesículas Extracelulares , MicroRNAs , Sepse , Humanos , Ferro/metabolismo , Vesículas Extracelulares/metabolismo , Inflamação/metabolismo , Sepse/terapia , MicroRNAs/metabolismo , Eritrócitos
11.
BMC Cardiovasc Disord ; 24(1): 33, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184555

RESUMO

OBJECTIVE: To investigate the association between circulating secretoneurin (SN) and angiographic coronary collateralization in stable angina patients with chronic coronary total occlusion (CTO). METHODS: SN concentrations in serum were measured in 641 stable angina patients with CTO by radioimmunoassay. The status of coronary collaterals from the contra-lateral vessel was visually estimated using the Rentrop grading system, and was categorized into poor (grade 0 or 1) or good (grade 2 or 3) collateralization. RESULTS: Serum SN levels were significantly higher in patients with good coronary collaterals compared to those with poor collaterals (175.23 ± 52.09 pmol/L vs. 143.29 ± 42.01 pmol/L, P < 0.001). Serum SN increased stepwise across Rentrop score 0 to 3 (P < 0.001), and increasing SN tertiles were associated with higher proportion of good coronary collateralization (OR, 1.907; 95% CI, 1.558 ~ 2.335, P < 0.001). After adjustment for confounding variables, serum SN (per tertile) remained an independent factor for predicting good coronary collaterals (OR, 1.870; 95% CI, 1.515 ~ 2.309; P < 0.001). Moreover, the diagnostic value of serum SN (per tertile) was consistent after stratifying patients based on gender, age, body mass index, hypertension, diabetes, history of smoking, severity of coronary artery disease and kidney function (OR: 1.511 ~ 2.680, P interaction ≥ 0.327). CONCLUSION: Elevated circulating SN reflects good angiographic coronary collaterals in stable angina patients with CTO. The findings may provide insight into decision-making for these patients.


Assuntos
Angina Estável , Hipertensão , Neuropeptídeos , Humanos , Angina Estável/diagnóstico por imagem , Coração
12.
Int Immunopharmacol ; 128: 111398, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171054

RESUMO

Liver fibrosis, a progression of chronic liver disease, is a significant concern worldwide due to the lack of effective treatment modalities. Recent studies have shown that natural products play a crucial role in preventing and treating liver fibrosis. Isobavachalcone (IBC) is a chalcone compound with anti-inflammatory, antioxidant, and anti-cancer properties. However, its potential antifibrotic effects remain to be elucidated. This study aimed to investigate the antifibrotic effects of IBC on liver fibrosis and its underlying mechanisms in rats. The results showed that IBC significantly ameliorated the pathological damage and collagen deposition in liver tissues; it also reduced the levels of hydroxyproline (HYP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). In addition, IBC activated Nuclear factor E2-associated factor 2/Hemeoxygenase-1 (Nrf2/HO-1) signaling, leading to the nuclear translocation of Nrf2. This translocation subsequently increased the levels of superoxide dismutase (SOD) and glutathione (GSH) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), thereby alleviating oxidative stress-induced damage. Moreover, it inhibited the expression of nuclear factor kappa B (NF-κB), which further reduced the levels of downstream inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta (IL-1ß), thereby suppressing the activation of HSCs and weakening liver fibrosis. In HSC-T6 cell experiments, changes observed in inflammatory responses, oxidative stress indicators, and protein expression were consistent with the in vivo results. Furthermore, the Nrf2 inhibitor (ML385) attenuated the effect of IBC on inhibiting the activation of quiescent HSCs. Consequently, IBC could alleviate liver fibrosis by activating Nrf2/ HO-1 signaling.


Assuntos
Chalconas , Animais , Ratos , Chalconas/farmacologia , Chalconas/uso terapêutico , Glutationa/metabolismo , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo
14.
Blood ; 143(4): 320-335, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37801708

RESUMO

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5' single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis-relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, "clonal shift" and "clonal drift" were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas de Ligação a RNA , Humanos , Evolução Clonal/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Recidiva , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/metabolismo
15.
Biol. Res ; 57: 3-3, 2024. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1550058

RESUMO

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Assuntos
Neomicina/metabolismo , Neomicina/toxicidade , Exossomos/metabolismo , Autofagia/fisiologia , Células Ciliadas Auditivas
16.
Mol Divers ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064107

RESUMO

Xanthohumol (Xn) is a chalcone compound isolated from Humulus lupulus Linn., that has various biological activities. In this study, eight Xn derivatives were synthesized by Williamson, Mannich, Reimer-Tiemann, and Schiff base reactions, and evaluated for their in vitro cytotoxic activity against five human cancer cell lines (MDA-MB-231, MCF-7, CNE-2Z, SMMC-7721, and H1975). Among these compounds, 2-((E)-2,4-dihydroxy-5-((E)-3-(4-hydroxyphenyl)acryloyl)-6-methoxy-3-(3- methylbut-2-en-1-yl)benzylidene)hydrazine-1-carboximidamide (8) exhibited the most potent cytotoxic activity against the five cancer cells, with IC50 values ranging from 4.87 to 14.35 µM. Wound-healing and transwell assays showed that compound 8 inhibited the migration and invasion of MDA-MB-231 cells by down-regulation HIF-1α, MMP-2 and MMP-9 protein expression. We further demonstrated that compound 8 induced apoptosis of MDA-MB-231 cells by increasing of Bax/Bcl-2 ratio and down-regulation of Akt protein expression.

17.
Chem Pharm Bull (Tokyo) ; 71(11): 798-803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914257

RESUMO

Four new magnolol derivatives were synthesized and evaluated for their in vitro anti-cancer properties. Among these, compound 3 showed the most potent cytotoxic activity against the SMMC-7721, SUN-449, and HepG2 human hepatocellular carcinoma cell lines, with IC50 values of 3.39, 4.11, and 6.88 µM, respectively. Compound 3 also induced apoptosis of SMMC-7721 cells by down-regulating Bcl-2 and Akt protein levels, up-regulating of Bax protein level, and cleaving caspase-9 and -3. In addition, transwell assays showed that compound 3 significantly suppressed the migration and invasion of SMMC-7721 cells, which was confirmed based on the down-regulation of hypoxia inducible factor-1α (HIF-1α), matrix metalloproteinase-2 and -9 (MMP-2, and MMP-9) protein levels.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metaloproteinase 2 da Matriz/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Invasividade Neoplásica , Apoptose , Proliferação de Células
18.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938067

RESUMO

In this paper, a new type of large-cavity two-anvil ultra-high pressure die structure is proposed to solve the problem that the large-scale of the two-anvil ultra-high pressure die is limited by the difficulty in machining the large-size tungsten carbide. The die is mainly composed of an internal split cylinder with an inner cone and its support ring and the external steel wire winding layer. The stress distribution and cavity dimensional stability of the split cylinder are studied by using the finite element method and compared with those of the integral cylinder. This suggests that although the cavity-dimensional stability of the split ultra-high pressure die is reduced, the split ultra-high pressure die has greater advantages in improving the pressure-bearing capacity, processing, and manufacturing.

19.
J Chem Inf Model ; 63(20): 6376-6385, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37782573

RESUMO

Medin is a principal component of localized amyloid found in the vasculature of individuals over 50 years old. Its amyloid aggregation has been linked to endothelial dysfunction and vascular inflammation, contributing to the pathogenesis of various vascular diseases. Despite its significance, the structures of the medin monomer, oligomer, and fibril remain elusive, and the dynamic processes of medin aggregation are not fully understood. In this study, we comprehensively investigated the medin folding and dimerization dynamics and conformations using atomistic discrete molecular dynamics simulations. Our simulation results suggested that the folding initiation of the medin involved the formation of ß-sheets around medin30-41 and medin42-50, with subsequent capping of other segments to their ß-sheet edges. Medin monomers typically consisted of three or four ß-strands, along with a dynamic N-terminal helix. Two isolated medin peptides readily aggregated into a ß-sheet-rich dimer, displaying a strong aggregation propensity. Dimerization of medin not only enhanced the ß-sheet conformations but also led to the formation of ß-barrel oligomers. The aggregation tendencies of medin1-18 and medin19-29 were relatively weak. However, the segments of medin30-41 and medin42-50 played a crucial role as they primarily formed a ß-sheet core and facilitated medin1-18 and medin19-29 to form intra- and interpeptide ß-sheets. The findings highlight the critical role of the medin30-41 and medin42-50 regions in stabilizing the monomer structure and driving the medin amyloid aggregation. These regions could potentially serve as promising targets for designing antiamyloid inhibitors against amyloid aggregation of medin. Additionally, our study provides a full picture of the monomer conformations and dimerization dynamics for medin, which will help better understand the pathology of medin aggregation.


Assuntos
Amiloide , Simulação de Dinâmica Molecular , Humanos , Pessoa de Meia-Idade , Dimerização , Amiloide/química , Peptídeos , Conformação Proteica em Folha beta , Peptídeos beta-Amiloides/química
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(8): 1128-1135, 2023 Aug 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37875353

RESUMO

OBJECTIVES: Nasopharyngeal cracinoma is a kind of head and neck malignant tumor with high incidence and high mortality. Due to the characteristics of local recurrence, distant metastasis, and drug resistance, the survival rate of patients after treatment is not high. Paclitaxel (PTX) is used as a chemotherapy drug in treating nasopharyngeal carcinoma, but nasopharyngeal carcinoma cells are easy to develop resistance to PTX. Inhibition of heat shock protein 90 (Hsp90) can overcome common signal redundancy and resistance in many cancers. This study aims to investigate the anti-tumor effect of ginkgolic acids C15꞉1 (C15:1) combined with PTX on nasopharyngeal carcinoma CNE-2Z cells and the mechanisms. METHODS: This experiment was divided into a control group (without drug), a C15:1 group (10, 30, 50, 70 µmol/L), a PTX group (5, 10, 20, 40 nmol/L), and a combination group. CNE-2Z cells were treated with the corresponding drugs in each group. The proliferation of CNE-2Z cells was evaluated by methyl thiazolyl tetrazolium (MTT). Wound-healing assay and transwell chamber assay were used to determine the migration of CNE-2Z cells. Transwell chamber was applied to the impact of CNE-2Z cell invasion. Annexin V-FITC/PI staining was used to observe the effect on apoptosis of CNE-2Z cells. The changes of proteins involved in cell invasion, migration, and apoptosis after the combination of C15꞉1 and PTX treatment were analyzed by Western blotting. RESULTS: Compared with the control group, the C15꞉1 group and the PTX group could inhibit the proliferation of CNE-2Z cells (all P<0.05). The cell survival rates of the C15꞉1 50 µmol/L combined with 5, 10, 20, or 40 nmol/L PTX group were lower than those of the single PTX group (all P<0.05), the combination index (CI) value was less than 1, suggesting that the combined treatment group had a synergistic effect. Compared with the 50 µmol/L C15꞉1 group and the 10 nmol/L PTX group, the combination group significantly inhibited the invasion and migration of CNE-2Z cells (all P<0.05). The results of Western blotting demonstrated that the combination group could significantly down-regulate Hsp90 client protein matrix metalloproteinase (MMP)-2 and MMP-9. The results of double staining showed that compared with the 50 µmol/L C15꞉1 group and the 10 nmol/L PTX group, the apoptosis ratio of CNE-2Z cells in the combination group was higher (both P<0.05). The results of Western blotting suggested that the combination group could decrease the Hsp90 client proteins [Akt and B-cell lymphoma-2 (Bcl-2)] and increase the Bcl-2-associated X protein (Bax). CONCLUSIONS: The combination of C15꞉1 and PTX has a synergistic effect which can inhibit cell proliferation, invasion, and migration, and induce cell apoptosis. This effect may be related to the inhibition of Hsp90 activity by C15꞉1.


Assuntos
Antineoplásicos , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Nasofaríngeas/metabolismo , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA