Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cytotechnology ; 76(4): 403-414, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38933875

RESUMO

Potential role and associated mechanisms of Annexin A8 (ANXA8), a member of the Annexins family, in cervical squamous cell carcinoma (CESC) are still unclear, despite being upregulated in various malignant tumors. Here, we observed a notably elevated expression of ANXA8 in CESC cells. The inhibition of ANXA8 amplified the susceptibility of CESC cells to Erastin and sorafenib-induced ferroptosis, whereas it exerted minimal influence on DPI7 and DPI10-induced ferroptosis. The results from the Fe2+ concentration assay showed no significant correlation between ANXA8 gene knockdown and intracellular Fe2+ concentration induced by ferroptosis inducers. Western blot analysis demonstrated that the knockdown of ANXA8 did not alter ACSL4 and LPCAT levels under ferroptosis-inducing conditions, but it did result in a reduction in intracellular GSH levels induced by the ferroptosis inducer. Subsequently, we identified TFAP2A as an upstream transcription factor of ANXA8, which plays a role in regulating cell ferroptosis. The knockdown of TFAP2A significantly elevated MDA levels and depressed GSH levels in the presence of a ferroptosis inducer, thereby inhibiting cell ferroptosis. However, this inhibitory effect could be reversed by ANXA8 overexpression. Therefore, our research suggests that the TFAP2A/ANXA8 axis exerts regulatory control over ferroptosis in CESC cells by mediating GSH synthesis in System Xc.

2.
Heliyon ; 10(7): e28441, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590909

RESUMO

Background: Fatty acid oxidation (FAO) is considered to play a vital part in tumor metabolic reprogramming. But the comprehensive description of FAO dysregulation in tumors has not been unknown. Methods: We obtained FAO genes, RNA-seq data and clinical information from the Msigdb, TCGA and GTEx databases. We assessed their prognosis value using univariate cox analysis, survival analysis and Kaplan-Meier curve. We determined the function of FAO genes using gene set variation analysis. The correlation analysis was calculated by corrplot R package. Immunotherapy response was assessed through TIDE scores. The protein expression levels of FAO genes were validated using immunohistochemistry (IHC). Results: The FAO scores were highest in COAD but lowest in PCPG. FAO scores were significantly associated with the prognosis of some cancers in OS, DSS, DFI and PFI. Besides, gene set variation analysis identified that FAO scores were related to immune-related pathways, and immune infiltration analysis showed FAO scores were positively related to cancer-associated fibroblasts and various immune-related genes. TIDE scores were significantly decreased in ACC, CHOL, ESCA, GBM, LAML, SARC, SKCM and THCA compared with normal samples, while it was significantly increased in BLCA, LUAD, LUSC, PCPG, PRAD and STAD. Besides, most FAO genes were downregulated in pan-cancer compared with normal samples. Moreover, we found copy number variation (CNV) of FAO genes played a positive role in their mRNA expression, while methylation was negative. We determined FAO genes were closely related to some drugs in pan-cancer. Conclusions: FAO score is a novel and promising factor for predicting outcomes.

3.
Int Immunopharmacol ; 133: 112025, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38677093

RESUMO

Angelica sinensis is a perennial herb widely distributed around the world, and angelica polysaccharide (APS) is a polysaccharide extracted from Angelica sinensis. APS is one of the main active components of Angelica sinensis. A large number of studies have shown that APS has hematopoietic, promoting blood circulation, radiation resistance, lowering blood glucose, enhancing the body immunity and other pharmacological effects in a variety of diseases. However, different extraction methods and extraction sites greatly affect the efficacy of APS. In recent years, with the emerging of new technologies, there are more and more studies on the combined application and structural modification of APS. In order to promote the comprehensive development and in-depth application of APS, this narrative review systematically summarizes the effects of different drying methods and extraction sites on the biological activity of APS, and the application of APS in the treatment of diseases, hoping to provide a scientific basis for the experimental study and clinical application of APS.


Assuntos
Angelica sinensis , Polissacarídeos , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Animais , Angelica sinensis/química , Angelica/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
4.
Biotechnol J ; 19(2): e2300174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403399

RESUMO

Mesenchymal stem cells (MSCs) and their produced exosomes have demonstrated inherent capabilities of inflammation-guided targeting and inflammatory modulation, inspiring their potential applications as biologic agents for inflammatory treatments. However, the clinical applications of stem cell therapies are currently restricted by several challenges, and one of them is the mass production of stem cells to satisfy the therapeutic demands in the clinical bench. Herein, a production of human amnion-derived MSCs (hMSCs) at a scale of over 1 × 109 cells per batch was reported using a three-dimensional (3D) culture technology based on microcarriers coupled with a spinner bioreactor system. The present study revealed that this large-scale production technology improved the inflammation-guided migration and the inflammatory suppression of hMSCs, without altering their major properties as stem cells. Moreover, these large-scale produced hMSCs showed an efficient treatment against the lipopolysaccharide (LPS)-induced lung inflammation in mice models. Notably, exosomes collected from these large-scale produced hMSCs were observed to inherit the efficient inflammatory suppression capability of hMSCs. The present study showed that 3D culture technology using microcarriers coupled with a spinner bioreactor system can be a promising strategy for the large-scale expansion of hMSCs with improved anti-inflammation capability, as well as their secreted exosomes.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Pneumonia , Humanos , Animais , Camundongos , Células-Tronco , Pneumonia/terapia , Inflamação/terapia
5.
Sci Rep ; 14(1): 130, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167649

RESUMO

Ovarian cancer (OVCA), a prevalent gynecological malignancy, ranks as the fourth most common cancer among women. Mitotic Arrest Deficient 2 Like 2 (MAD2L2), a chromatin-binding protein and a component of DNA polymerase ζ, has been previously identified as an inhibitor of tumor growth in colorectal cancer. However, the roles of MAD2L2 in OVCA, including its expression, impact, and prognostic significance, remain unclear. We employed bioinformatics tools, Cox Regression analysis, and in vitro cell experiments to investigate its biological functions. Our findings reveal that MAD2L2 typically undergoes genomic alterations, such as amplifications and deep deletions. Moreover, we observed an overexpression of MAD2L2 mRNA in OVCA patients, correlating with reduced survival rates, particularly in those with Grade IV tumors. Furthermore, analysis of mRNA biofunctions indicated that MAD2L2 is predominantly localized in the organellar ribosome, engaging mainly in NADH dehydrogenase activity. This was deduced from the results of gene ontology enrichment analysis, which also identified its role as a structural constituent in mitochondrial translation elongation. These findings were corroborated by KEGG pathway analysis, further revealing MAD2L2's involvement in tumor metabolism and the cell death process. Notably, MAD2L2 protein expression showed significant associations with various immune cells, including CD4+T cells, CD8+T cells, B cells, natural killer cells, and Myeloid dendritic cells. Additionally, elevated levels of MAD2L2 were found to enhance cell proliferation and migration in OVCA cells. The upregulation of MAD2L2 also appears to inhibit the ferroptosis process, coinciding with increased mTOR signaling activity in these cells. Our study identifies MAD2L2 as a novel regulator in ovarian tumor progression and offers new insights for treating OVCA.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Proteínas , Processos Neoplásicos , Proliferação de Células/genética , RNA Mensageiro/genética , Linhagem Celular Tumoral , Proteínas Mad2/genética , Proteínas Mad2/metabolismo
6.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 70(3): e20230963, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1535100

RESUMO

SUMMARY OBJECTIVE: The aim of this study was to explore the correlation between skeletal muscle content and the presence and severity of metabolic dysfunction-associated fatty liver disease in patients with metabolic dysregulation in China. METHODS: A cross-sectional study was conducted among patients from the endocrinology outpatient department at Ningbo First Hospital, in Ningbo, China, in April 2021. Adult patients with metabolic dysregulation who accepted FibroScan ultrasound were included in the study. However, those without clinical data on skeletal muscle mass were excluded. FibroScan ultrasound was used to noninvasively evaluate metabolic dysfunction-associated fatty liver disease. The controlled attenuation parameter was used as an evaluation index for the severity of liver steatosis. Bioelectrical impedance analysis was used to measure the skeletal muscle index. RESULTS: A total of 153 eligible patients with complete data were included in the final analysis. As the grading of liver steatosis intensifies, skeletal muscle index decreases (men: Ptrend<0.001, women: Ptrend=0.001), while body mass index, blood pressure, blood lipid, uric acid, aminotransferase, and homeostatic model assessment of insulin resistance increase (Ptrend<0.01). After adjusting for confounding factors, a negative association between skeletal muscle index and the presence of metabolic dysfunction-associated fatty liver disease was observed in men (OR=0.691, p=0.027) and women (OR=0.614, p=0.022). According to the receiver operating characteristic curve, the best cutoff values of skeletal muscle index for predicting the metabolic dysfunction-associated fatty liver disease presence were 40.37% for men (sensitivity, 87.5%; specificity, 61.5%) and 33.95% for women (sensitivity, 78.6%; specificity, 63.8%). CONCLUSION: Skeletal muscle mass loss among patients with metabolic dysregulation was positively associated with metabolic dysfunction-associated fatty liver disease severity in both sexes. The skeletal muscle index cutoff value could be used to predict metabolic dysfunction-associated fatty liver disease.

7.
Hum Cell ; 36(6): 2113-2128, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37709991

RESUMO

Chromobox protein homolog 8 (CBX8) is a transcriptional suppressor participated in various cancers. However, the function and mechanism of CBX8 in the progression of ovarian cancer (OC) are unclear. In this study, we found that CBX8 was upregulated in OC tissues originating from GEPIA and TNM databases, OC patients' samples from hospital, and OC cell lines. Furthermore, CBX8 knockdown by short hairpin RNA (shRNA) technology markedly inhibited proliferation and invasion, induced migration, cell cycle arrest, and apoptosis in vitro. Mechanistically, CBX8 activated PI3K/AKT/mTOR signaling pathway to take effect. In addition, TRIM28 and E2F1 were enriched in OC tissues from the TNM database and OC patients' samples similar to the results of CBX8. Correlation analysis indicated positive correlations among TRIM28, E2F1, and CBX8. E2F1 was proved to bind to the promoter regions of CBX8 and TRIM28, while TRIM28 recruited E2F1 to increase the expression of CBX8 to further increase cell viability, proliferation, and invasion, and decrease migration, apoptosis, and cell cycle progression. Finally, CBX8 or TRIM28 knockdown repressed tumor growth and metastasis of OC in vivo. Therefore, our study showed that the promoting effect of CBX8 on tumor growth and metastasis of OC was participated in the PI3K/AKT/mTOR signaling, TRIM28 and E2F1. Our findings suggested that CBX8 could serve as a potential marker and therapeutic target for OC patients.

8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(7): 1086-1097, 2023 Jul 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37724412

RESUMO

Cardiometabolic disease is a common clinical syndrome with exact causal relationship between the aberrant of glucose/lipid metabolism and cardiovascular disfunction, but its pathogenesis is unclear. Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway regulates the activation of innate immunity by sensing intracellular double stranded DNA. Metabolic risk factors drive the activation of cGAS-STING pathway through mitochondrial DNA, nuclear DNA and endoplasmic reticulum stress. In addition, the activation of the cGAS-STING pathway triggers chronic sterile inflammation, excessive activation of autophagy, senescence and apoptosis in related cells of cardiovascular system. These changes induced by cGAS-STING pathway might be implicated in the onset and deterioration of cardiometabolic disease. Therefore, the targeting intervention of cGAS-STING signaling pathway may emerge as a novel treatment for cardiometabolic disease.


Assuntos
Doenças Cardiovasculares , Transdução de Sinais , Humanos , Apoptose , Autofagia , Glucose , Inflamação
9.
Chem Biol Drug Des ; 102(1): 101-114, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36892495

RESUMO

Evodiamine (EVO) has been demonstrated to promote apoptosis of ovarian cancer cells, and upregulate miR-152-3p level in colorectal cancer. Here, we explore part of the network mechanism of EVO and miR-152-3p in ovarian cancer. The bioinformatics website, dual luciferase reporter assay, and quantitative real-time polymerase chain reaction were applied to analyze the network among EVO, lncRNA, miR-152-3p, and mRNA. The effect and mechanism of EVO on ovarian cancer cells were determined using cell counting kit-8, flow cytometry, TUNEL, Western blot, and rescue experiments. As a result, EVO dose-dependently attenuated cell viability, induced G2/M phase arrest and apoptosis, promoted miR-152-3p level (4.5- or 2-fold changes), and inhibited expressions of NEAT1 (0.225- or 0.367-fold changes), CDK8 (0.625- or 0.571-fold changes), and CDK19 (0.25- or 0.147-fold changes) in OVCAR-3 and SKOV-3 cells. In addition, EVO decreased Bcl-2 expression, but increased the expressions of Bax and c-caspase-3. NEAT1 targeted miR-152-3p which bound to CDK19. The impacts of EVO on cell viability, cycle, apoptosis, and apoptosis-related proteins were partially reversed by miR-152-3p inhibitor, NEAT1 overexpression, or CDK19 overexpression. Furthermore, miR-152-3p mimic offset the effects of NEAT1 or CDK19 overexpression. The role of NEAT1 overexpression in the biological phenotype of ovarian cancer cells was counteracted by shCDK19. In conclusion, EVO attenuates ovarian cancer cell progression via the NEAT1-miR-152-3p-CDK19 axis.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Apoptose , Neoplasias Ovarianas/genética , Quinases Ciclina-Dependentes
10.
Gynecol Obstet Invest ; 87(5): 305-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36198257

RESUMO

OBJECTIVE: Preeclampsia (PE) is the most common gestational disease related to various biomolecules, including circular RNA. Hsa_circ_0088196 (circ_0088196) was aberrantly upregulated in PE tissues. DESIGN: This study focused on the further exploration of circ_0088196 in PE. METHODS: Circ_0088196, microRNA-133b (miR-133b), and AHNAK Nucleoprotein (AHNAK) levels were examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). EDU assay was used for proliferation detection. Cell cycle and apoptosis were analyzed using flow cytometry. Wound healing assay and transwell assay were performed to assess migration and invasion. The protein levels were determined via Western blot. Target analysis was conducted through dual-luciferase reporter assay and RNA pull-down assay. RESULTS: Circ_0088196 upregulation was detected in PE patients. The knockdown of circ_0088196 induced the promotion of proliferation, cell cycle, migration, and invasion but not the inhibition of apoptosis in trophoblastic cells. Then, circ_0088196 was found to act as a sponge of miR-133b in HTR-8/SVneo cells. The inhibition of miR-133b abolished the regulation of si-circ_0088196 in trophoblastic cells. In addition, miR-133b targeted AHNAK and circ_0088196 evoked the expression change of AHNAK by sponging miR-133b. The function of circ_0088196 was also achieved by regulating AHNAK in trophoblastic cells. LIMITATIONS: The role of circ_0088196 in PE was not verified by in vivo experiments. CONCLUSION: The current evidence demonstrated that circ_0088196 knockdown facilitated trophoblastic cell development by regulating the levels of miR-133b and AHNAK, suggesting that circ_0088196 promoted the PE progression via the miR-133b/AHNAK axis.


Assuntos
Proteínas de Membrana , MicroRNAs , Pré-Eclâmpsia , RNA Circular , Feminino , Humanos , Gravidez , Apoptose/genética , Proliferação de Células/genética , Regulação para Baixo , Proteínas de Membrana/genética , MicroRNAs/genética , Proteínas de Neoplasias , Pré-Eclâmpsia/genética , Regulação para Cima , RNA Circular/genética
11.
Transl Cancer Res ; 11(6): 1652-1664, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35836529

RESUMO

Background: There has been lack of guidance for stratify treatment between cervical endometrioid adenocarcinoma (EC) and ordinary cervical adenocarcinoma (AC), therefore understanding the difference of prognosis between EC and AC is important for individualized therapy for these patients. Methods: In this study, we compare the survival outcomes between cervical EC and AC patients from the SEER database. we analyzed 2,554 patients for overall survival (OS) and 2,527 patients for disease-specific survival (DSS), Cox regression and Kaplan-Meier analyses were conducted to analyze the survival outcomes of the AC and EC patients, a 1:1 propensity score matching (PSM) method was used to match patients and balance various factors, OS and DSS were analyzed among the subgroups before and after 1:1 PSM. Results: In the unmatched cohort, in the multivariate analysis, no statistically significant difference was found in terms of OS (P=0.24) and DSS (P=0.20) between the EC and AC patients, The 3- and 5-year OS rates were 77.89% and 72.65% for the AC patients, and 83.38% and 75.64% for the EC patients respectively. The 3- and 5-year DSS rates were 84.93% and 79.69% for the EC patients, 83.97% and 76.78% for the AC patients, respectively. In the PSM cohort, 280 AC patients and 280 EC patients were included in the analysis of OS. 273 AC patients and 275 EC patients were included in the analysis of DSS, the Kaplan-Meier analysis and the multivariate analysis also produced similar results for the unmatched groups. Conclusions: There were no statistically significant differences in OS and DSS between the cervical EC and AC patients.

12.
Mol Med Rep ; 25(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35348185

RESUMO

C1q/TNF­α­related protein 9 (CTRP9) is downregulated in gestational diabetes mellitus (GDM) and may exert a protective effect against GDM, although its mechanism of action is yet to be elucidated. To investigate the specific role of CTRP9 in GDM, the human placental trophoblast cell line HTR8/SVneo was treated with high glucose (HG) to simulate the environment of GDM in vitro. The effects of CTRP9 on the HTR8/SVneo cells and endoplasmic reticulum (ER) stress were analyzed before and after CTRP9 overexpression using reverse transcription­quantitative PCR and western blotting. The results obtained demonstrated that CTRP9 alleviated ER stress in the trophoblast cell line. After treating with the ER­stress inducer tunicamycin, cell viability was investigated by performing Cell Counting Kit­8, TUNEL and western blotting assays, which revealed that CTRP9 increased the activity of HTR8/SVneo cells induced by HG through the alleviation of ER stress. Subsequently, ELISA and western blotting assay results demonstrated that CTRP9 inhibited HG­induced inflammation of the HTR8/SVneo cells by the reduction in ER stress. Finally, the detection of reactive oxygen species, nitric oxide (NO) synthase and NO levels confirmed that CTRP9 inhibited the oxidative stress of HTR8/SVneo cells induced by HG through the reduction of ER stress. Collectively, the results of the present study suggested that CTRP9 may decrease trophoblast cell damage caused by HG through the suppression of ER stress, and therefore, CTRP9 may potentially be a therapeutic target in the treatment of GDM.


Assuntos
Estresse do Retículo Endoplasmático , Trofoblastos , Feminino , Glucose/metabolismo , Glucose/farmacologia , Humanos , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Cancer Manag Res ; 13: 9329-9343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992456

RESUMO

BACKGROUND: Mounting evidence indicates altered circadian rhythm represents a critical factor affecting carcinogenesis and tumor progression. The circadian gene neuronal PAS domain protein 2 (NPAS2) constitutes a newly discovered prognostic biomarker. NPAS2 dysregulation is found in multiple malignancies, although its functions in uterine corpus endometrial carcinoma (UCEC) remain largely unknown. OBJECTIVE: To evaluate NPAS2's roles in UCEC and to explore the underlying mechanisms. METHODS: NPAS2 transcription levels, patient prognosis, different clinical stages and target microRNAs in UCEC cases were comparatively assessed based on public databases, including UALCAN, GEPIA, TIMER, Kaplan-Meier plotter, starBase database, LinkedOmics and String. Then, qRT-PCR and immunohistochemical analysis were applied to analyze the expression of NPAS2 in UCEC tissue samples. CCK-8, clonogenic assay and flow cytometry were carried out for detecting cell viability, colony formation ability and cell apoptosis, respectively. RESULTS: NPAS2 was upregulated in tissue samples from UCEC cases compared with the corresponding control specimens. NPAS2 overexpression was associated with decreased overall (OS), disease free (DFS) and relapse free (RFS) survival in UCEC. In addition, NPAS2 overexpression was associated with clinical stage, tumor grade, estrogen receptor status, myometrial invasion in UCEC. Furthermore, NPAS2 knockdown or overexpression altered cell proliferation and apoptosis in UCEC. Moreover, NPAS2 showed significant negative correlations with miR-17-5p and miR-93-5p, and positive correlations with miR-106a-5p and miR-381-3p in UCEC. CONCLUSION: NPAS2 overexpression is associated with poor prognosis and clinicopathological characteristics in UCEC and promotes proliferation and colony formation while inhibiting apoptosis. Finally, NPAS2 is associated with several miRNAs in UCEC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA