Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 808
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Med Chem ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713486

RESUMO

CARM1, belonging to the protein arginine methyltransferase (PRMT) family, is intricately associated with the progression of cancer and is viewed as a promising target for both cancer diagnosis and therapy. However, the number of specific and potent CARM1 inhibitors is limited. We herein discovered a CARM1 inhibitor, iCARM1, that showed better specificity and activity toward CARM1 compared to the known CARM1 inhibitors, EZM2302 and TP-064. Similar to CARM1 knockdown, iCARM1 suppressed the expression of oncogenic estrogen/ERα-target genes, whereas activated type I interferon (IFN) and IFN-induced genes (ISGs) in breast cancer cells. Consequently, iCARM1 potently suppressed breast cancer cell growth both in vitro and in vivo. The combination of iCARM1 with either endocrine therapy drugs or etoposide demonstrated synergistic effects in inhibiting the growth of breast tumors. In summary, targeting CARM1 by iCARM1 effectively suppresses breast tumor growth, offering a promising therapeutic approach for managing breast cancers in clinical settings.

2.
Nucleic Acids Res ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676947

RESUMO

Protein arginine methyltransferase CARM1 has been shown to methylate a large number of non-histone proteins, and play important roles in gene transcriptional activation, cell cycle progress, and tumorigenesis. However, the critical substrates through which CARM1 exerts its functions remain to be fully characterized. Here, we reported that CARM1 directly interacts with the GATAD2A/2B subunit in the nucleosome remodeling and deacetylase (NuRD) complex, expanding the activities of NuRD to include protein arginine methylation. CARM1 and NuRD bind and activate a large cohort of genes with implications in cell cycle control to facilitate the G1 to S phase transition. This gene activation process requires CARM1 to hypermethylate GATAD2A/2B at a cluster of arginines, which is critical for the recruitment of the NuRD complex. The clinical significance of this gene activation mechanism is underscored by the high expression of CARM1 and NuRD in breast cancers, and the fact that knockdown CARM1 and NuRD inhibits cancer cell growth in vitro and tumorigenesis in vivo. Targeting CARM1-mediated GATAD2A/2B methylation with CARM1 specific inhibitors potently inhibit breast cancer cell growth in vitro and tumorigenesis in vivo. These findings reveal a gene activation program that requires arginine methylation established by CARM1 on a key chromatin remodeler, and targeting such methylation might represent a promising therapeutic avenue in the clinic.

3.
Adv Sci (Weinh) ; : e2307238, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639443

RESUMO

Preventing and treating avascular necrosis at the distal end of the flaps are critical to surgery success, but current treatments are not ideal. A recent study shows that apoptotic bodies (ABs) generated near the site of apoptosis can be taken up and promote cell proliferation. The study reveals that ABs derived from fibroblast-like cells in the subcutaneous connective tissue (FSCT cells) of skin flaps promoted ischaemic flap survival. It is also found that ABs inhibited cell death and oxidative stress and promoted M1-to-M2 polarization in macrophages. Transcriptome sequencing and protein level testing demonstrated that ABs promoted ischaemic flap survival in endothelial cells and macrophages by inhibiting ferroptosis via the KEAP1-Nrf2 axis. Furthermore, microRNA (miR) sequencing data and in vitro and in vivo experiments demonstrated that ABs inhibited KEAP1 by delivering miR-339-5p to exert therapeutic effects. In conclusion, FSCT cell-derived ABs inhibited ferroptosis, promoted the macrophage M1-to-M2 transition via the miR-339-5p/KEAP1/Nrf2 axis and promoted ischaemic flap survival. These results provide a potential therapeutic strategy to promote ischaemic flap survival by administering ABs.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38574253

RESUMO

Background: Clonorchiasis remains a serious public health problem. However, the molecular mechanism underlying clonorchiasis remains largely unknown. Amino acid (AA) metabolism plays key roles in protein synthesis and energy sources, and improves immunity in pathological conditions. Therefore, this study aimed to explore the AA profiles of spleen in clonorchiasis and speculate the interaction between the host and parasite. Methods: Here targeted ultrahigh performance liquid chromatography multiple reaction monitoring mass spectrometry was applied to discover the AA profiles in spleen of rats infected with Clonorchis sinensis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was performed to characterize the dysregulated metabolic pathways. Results: Pathway analysis revealed that phenylalanine, tyrosine, and tryptophan biosynthesis and ß-alanine metabolism were significantly altered in clonorchiasis. There were no significant correlations between 14 significant differential AAs and interleukin (IL)-1ß. Although arginine, asparagine, histidine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were positively correlated with IL-6, IL-10, tumor necrosis factor (TNF)-α as well as aspartate aminotransferase and alanine aminotransferase; ß-alanine and 4-hydroxyproline were negatively correlated with IL-6, IL-10, and TNF-α. Conclusion: This study reveals the dysregulation of AA metabolism in clonorchiasis and provides a useful insight of metabolic mechanisms at the molecular level.

5.
Noncoding RNA Res ; 9(2): 388-406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511067

RESUMO

Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins but have been linked to cancer development and metastasis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) influences crucial cancer hallmarks through intricate molecular mechanisms, including proliferation, invasion, angiogenesis, apoptosis, and the epithelial-mesenchymal transition (EMT). The current article highlights the involvement of MALAT-1 in drug resistance, making it a potential target to overcome chemotherapy refractoriness. It discusses the impact of MALAT-1 on immunomodulatory molecules, such as major histocompatibility complex (MHC) proteins and PD-L1, leading to immune evasion and hindering anti-tumor immune responses. MALAT-1 also plays a significant role in cancer immunology by regulating diverse immune cell populations. In summary, MALAT-1 is a versatile cancer regulator, influencing tumorigenesis, chemoresistance, and immunotherapy responses. Understanding its precise molecular mechanisms is crucial for developing targeted therapies, and therapeutic strategies targeting MALAT-1 show promise for improving cancer treatment outcomes. However, further research is needed to fully uncover the role of MALAT-1 in cancer biology and translate these findings into clinical applications.

6.
Cancer Res ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502865

RESUMO

The urea cycle is frequently rewired in cancer cells to meet the metabolic demands of cancer. Elucidation of the underlying mechanism by which oncogenic signaling mediates urea cycle reprogramming could help identify targetable metabolic vulnerabilities. In this study, we discovered that oncogenic activation of KRAS in non-small cell lung cancer (NSCLC) silenced the expression of argininosuccinate synthase 1 (ASS1), a urea cycle enzyme that catalyzes the production of arginine from aspartate and citrulline, and thereby diverted the utilization of aspartate to pyrimidine synthesis to meet the high demand for DNA replication. Specifically, KRAS signaling facilitated a hypo-acetylated state in the promoter region of the ASS1 gene in a histone deacetylase 3 (HDAC3)-dependent manner, which in turn impeded the recruitment of c-MYC for ASS1 transcription. ASS1 suppression in KRAS-mutant NSCLC cells impaired the biosynthesis of arginine and rendered a dependency on the arginine transmembrane transporter SLC7A1 to import extracellular arginine. Depletion of SLC7A1 in both patient-derived organoid and xenograft models inhibited KRAS-driven NSCLC growth. Together, these findings uncover the role of oncogenic KRAS in rewiring urea cycle metabolism and identify SLC7A1-mediated arginine uptake as a therapeutic vulnerability for treating KRAS-mutant NSCLC.

7.
J Cancer ; 15(8): 2318-2328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495493

RESUMO

Aim of the study: To investigate the anti-tumor effects of Lasiokaurin on breast cancer and explore its underlying molecular mechanism. Materials and methods: In this study, MTT assay, plate colony formation assays, soft agar assay, and EdU assay were employed to evaluate the anti-proliferation effects of LAS. Apoptosis and cell cycle distribution were detected by flow cytometry. The molecular mechanism was predicted by performing RNA sequencing and verified by using immunoblotting assays. Breast cancer organiods derived from patient-derived xenografts model and MDA-MB-231 xenograft mouse model were established to assess the effect of LAS. Results: Our study showed that LAS treatment significantly suppressed cell viability of 5 breast cancer cell lines, with the IC50 value of approximately 1-5 µM. LAS also inhibitied the clonogenic ability and DNA synthesis of breast cancer cells, Moreover, LAS induced apoptosis and G2/M cell cycle arrest in SK-BR-3 and MDA-MB-231 cells. Notably, transcriptomic analysis predicted the mechanistic involvement of PLK1 in LAS-suppressed breast cancer progression. Our experiment data further verified that LAS reduced PLK1 mRNA and protein expression in breast cancer, accompanied by downregulating CDC25C and AKT phosphorylation. Ultimately, we confirmed that LAS inhibit breast cancer growth via inhibiting PLK1 pathway in vivo. Conclusions: Collectively, our findings revealed that LAS inhibits breast cancer progression via regulating PLK1 pathway, which provids scientific evidence for the use of traditional Chinese medicine in cancer therapy.

8.
Cell Mol Life Sci ; 81(1): 121, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457049

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent gastrointestinal malignancies with high mortality worldwide. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in human cancers, including ESCC. However, the detailed mechanisms of lncRNAs in the regulation of ESCC progression remain incompletely understood. LUESCC was upregulated in ESCC tissues compared with adjacent normal tissues, which was associated with gender, deep invasion, lymph node metastasis, and poor prognosis of ESCC patients. LUESCC was mainly localized in the cytoplasm of ESCC cells. Knockdown of LUESCC inhibited cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth in vivo. Mechanistic investigation indicated that LUESCC functions as a ceRNA by sponging miR-6785-5p to enhance NRSN2 expression, which is critical for the malignant behaviors of ESCC. Furthermore, ASO targeting LUESCC substantially suppressed ESCC both in vitro and in vivo. Collectively, these data demonstrate that LUESCC may exerts its oncogenic role by sponging miR-6785-5p to promote NRSN2 expression in ESCC, providing a potential diagnostic marker and therapeutic target for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Progressão da Doença , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Phytother Res ; 38(5): 2539-2559, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459660

RESUMO

Avascular necrosis frequently occurs as a complication following surgery involving the distal perforator flap. Dihydrocapsaicin (DHC) can protect tissue from ischemia-reperfusion (I/R) injury, but its specific role in multizone perforator flaps remains unclear. In this study, the prospective target of DHC in the context of I/R injury was predicted using network pharmacology analysis. Flap viability was determined through survival area analysis, laser Doppler blood flow, angiograms, and histological examination. The expressions of angiogenesis, apoptosis, NLR family pyrin domain containing 3 (NLRP3) inflammasome, oxidative stress, and molecules related to cyclic guanosine monophosphate (GMP)-adenosine monophosphate synthase (cGAS)-interferon gene stimulant (STING) pathway were assessed using western blotting, immunofluorescence, TUNEL staining, and dihydroethidium (DHE) staining. Our finding revealed that DHC promoted the perforator flap survival, which involves the cGAS-STING pathway, oxidative stress, NLRP3 inflammasome, apoptosis, and angiogenesis. DHC induced oxidative stress resistance and suppressed the NLRP3 inflammasome, preventing apoptosis in vascular endothelial cells. Through regulation of STING pathway, DHC controlled oxidative stress in endothelial cells and NLRP3 levels in ischemic flaps. However, activation of the cGAS-STING pathway led to the accumulation of reactive oxygen species (ROS) and NLRP3 inflammasome, thereby diminishing the protective role of DHC. DHC enhanced the survival of multidomain perforator flaps by suppressing the cGAS-STING pathway, oxidative stress, and the formation of NLRP3 inflammasome. These findings unveil a potentially novel mechanism with clinical significance for promoting the survival of multidomain perforator flaps.


Assuntos
Apoptose , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Retalho Perfurante , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Inflamassomos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL
11.
Dis Colon Rectum ; 67(5): 723-731, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305749

RESUMO

BACKGROUND: The Delphi consensus identified 8 symptoms and 8 consequences as the highest priorities for defining low anterior resection syndrome. OBJECTIVE: To describe an exploratory scoring instrument correlating the Delphi consensus on low anterior resection syndrome with functional and quality-of-life scores following intersphincteric resection for ultralow rectal cancer. DESIGN: This was a prospective pilot study. In accordance with the Wexner incontinence score, 5 frequency responses ranging from never (score 0) to always (score 4) were used to measure the severity of symptom- and consequence-specific variables. SETTINGS: Colorectal surgery referral center. PATIENTS: Among 161 eligible patients, 137 participants (85%) completed an electronic self-assessment survey regarding function and quality of life at scheduled follow-up, including 3 to 6, 12, and ≥24 months after ileostomy reversal. MAIN OUTCOME MEASURES: Outcome measures included patient-reported severity of the identified priorities, and their correlation with condition-specific quality of life. RESULTS: The most frequent symptom and consequence were "emptying difficulties" and "dissatisfaction with the bowels," respectively. Aside from "emptying difficulties," the proportions of negative symptom domains increased after reversal. In particular, neither the frequency responses nor the severity scores of "emptying difficulties" differed between groups. The percentages of "always" selection for consequence domains improved at 12-month follow-up, whereas a higher rate was observed at 24 months, except for "toilet dependence" and "dissatisfaction with the bowels." We found significant improvements in the summary score of the Fecal Incontinence Quality-of-Life Scale ( p = 0.04) and our exploratory instrument ( p = 0.009) but not in functional scores measured by traditional questionnaires. Furthermore, the condition-specific quality of life strongly correlated with the Delphi consensus severity score ( rs = -0.73). LIMITATIONS: Single-institution data and limited sample size. CONCLUSIONS: The important priorities identified by the Delphi consensus might enable a comprehensive overview and a better assessment of low anterior resection syndrome after intersphincteric resection. See Video Abstract . EVALE LA GRAVEDAD DEL SNDROME DE RESECCIN ANTERIOR BAJA DESPUS DE LA RESECCIN INTERESFINTRICA PARA EL CNCER DE RECTO ULTRABAJO UN ESTUDIO PILOTO QUE UTILIZA UN INSTRUMENTO EXPLORATORIO: ANTECEDENTES:El consenso Delphi identificó ocho síntomas y ocho consecuencias como las máximas prioridades para definir el síndrome de resección anterior baja.OBJETIVO:Describir un instrumento de puntuación exploratorio que correlaciona el consenso Delphi sobre el síndrome de resección anterior baja con puntuaciones funcionales y de calidad de vida después de la resección interesfinteriana para el cáncer de recto ultrabajo.DISEÑO:Este fue un estudio piloto prospectivo. De acuerdo con la puntuación de incontinencia de Wexner, se utilizaron cinco respuestas de frecuencia que van desde nunca (puntuación 0) hasta siempre (puntuación 4) para medir la gravedad de las variables específicas de los síntomas y las consecuencias.AJUSTES:Centro de referencia de cirugía colorrectal.PACIENTES:Entre 161 pacientes elegibles, 137 (85%) participantes completaron una encuesta electrónica de autoevaluación sobre la función y la calidad de vida en el seguimiento programado, incluidos 3 a 6, 12 y ≥ 24 meses después de la reversión de la ileostomía.MEDIDAS PRINCIPALES DE RESULTADO:Las medidas de resultado incluyeron la gravedad de estas prioridades informada por los pacientes, así como su correlación con la calidad de vida específica de la afección.RESULTADOS:El síntoma y la consecuencia más frecuentes fueron "dificultades para vaciar" e "insatisfacción con las deposiciones", respectivamente. Aparte de las "dificultades de vaciado", las proporciones de dominios de síntomas negativos aumentaron después de la reversión. En particular, tanto las respuestas de frecuencia como las puntuaciones de gravedad de las "dificultades para vaciar" no difirieron entre los grupos. Los porcentajes de "opción siempre" para los dominios de consecuencias mejoraron a los 12 meses de seguimiento, mientras que se observó una tasa más alta a los 24 meses después, excepto para "dependencia del baño" e "insatisfacción con los intestinos". Encontramos mejoras significativas en la puntuación resumida de la Escala de calidad de vida de incontinencia fecal ( p = 0,04) y nuestro instrumento exploratorio ( p = 0,009), pero no en las puntuaciones funcionales medidas con los cuestionarios tradicionales. Además, la calidad de vida específica de la condición se correlacionó fuertemente con la puntuación de gravedad del consenso Delphi (rs = -0,73).LIMITACIONES:Datos de una sola institución y tamaño de muestra limitado.CONCLUSIONES:Las importantes prioridades identificadas por el consenso Delphi podrían permitir una visión global y una mejor evaluación del síndrome de resección anterior baja después de la resección interesfintérica. (Traducción-Dr. Yesenia Rojas-Khalil ).


Assuntos
Neoplasias Retais , Humanos , Neoplasias Retais/cirurgia , Síndrome de Ressecção Anterior Baixa , Projetos Piloto , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Estudos Prospectivos , Qualidade de Vida , Estudos Retrospectivos
12.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399439

RESUMO

Background: Arnicolide C, which is isolated from Centipeda minima, has excellent antitumor effects. However, the potential impacts and related mechanisms of action of arnicolide C in breast cancer remain unknown. Methods: The viability of breast cancer cells was measured using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and colony formation assays. For analysis of apoptosis and the cell cycle, flow cytometry was used. A molecular docking approach was used to explore the possible targets of arnicolide C. Western blot analysis was used to detect changes in the expression of 14-3-3θ and proteins in related pathways after arnicolide C treatment in breast cancer cells. The anti-breast cancer effect of arnicolide C in vivo was evaluated by establishing cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Results: Arnicolide C inhibited proliferation, increased apoptosis, and induced G1 arrest. In particular, molecular docking analysis indicated that arnicolide C binds to 14-3-3θ. Arnicolide C reduced 14-3-3θ expression and inhibited its downstream signaling pathways linked to cell proliferation. Similar results were obtained in the CDX and PDX models. Conclusion: Arnicolide C can have an anti-breast cancer effect both in vitro and in vivo and can induce cell cycle arrest and increase apoptosis in vitro. The molecular mechanism may be related to the effect of arnicolide C on the expression level of 14-3-3θ. However, the specific mechanism through which arnicolide C affects 14-3-3θ protein expression still needs to be determined.

13.
Adv Sci (Weinh) ; 11(11): e2304781, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189627

RESUMO

Intervention of the gut microbiome is a promising adjuvant strategy in cancer immunotherapy. Chemotherapeutic agents are recognized for their substantial impacts on the gut microbiome, yet their therapeutic potential as microbiome modulators remains uncertain, due to the complexity of microbiome-host-drug interactions. Here, it is showed that low-dose chemotherapy preferentially shapes the ileal microbiome to augment the extraintestinal immune response to anti-programmed death-1 (anti-PD-1) therapy without causing intestinal toxicity. Mechanistically, low-dose chemotherapy causes DNA damage restricted to highly-proliferative ileal epithelial cells, resulting in the accumulation of cytosolic dsDNA and the activation of the absent in melanoma 2 (AIM2) inflammasome. AIM2-dependent IL-18 secretion triggers the interplay between proximal Th1 cells and Paneth cells in ileal crypts, impairing the local antimicrobial host defense and resulting in ileal microbiome change. Intestinal epithelium-specific knockout of AIM2 in mice significantly attenuates CPT-11-caused IL-18 secretion, Paneth cell dysfunction, and ileal microbiome alteration. Moreover, AIM2 deficiency in mice or antibiotic microbial depletion attenuates chemotherapy-augmented antitumor responses to anti-PD1 therapy. Collectively, these findings provide mechanistic insights into how chemotherapy-induced genomic stress is transduced to gut microbiome change and support the rationale of applying low-dose chemotherapy as a promising adjuvant strategy in cancer immunotherapy with minimal toxicity.


Assuntos
Melanoma , Microbiota , Animais , Camundongos , Inflamassomos , Interleucina-18/genética , Inibidores de Checkpoint Imunológico/farmacologia , Proteínas de Ligação a DNA/genética , Células Epiteliais
15.
Cell Chem Biol ; 31(1): 177-183.e17, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38194973

RESUMO

N6-methyladenosine (m6A) methylation is the most abundant type of RNA modification that is mainly catalyzed by the METTL3-METTL14 methyltransferase complex. This complex has been linked to multiple cancers and is considered a promising therapeutic target for acute myeloid leukemia (AML). However, only a few METTL3 inhibitors targeting the catalytic activity were developed recently. Here, we present the discovery of WD6305 as the potent and selective proteolysis-targeting chimera (PROTAC) degrader of METTL3-METTL14 complex. WD6305 suppresses m6A modification and the proliferation of AML cells, and promotes apoptosis much more effectively than its parent inhibitor. WD6305 also affects a variety of signaling pathways related to the development and proliferation of AML. Collectively, our study reveals PROTAC degradation of METTL3-METTL14 complex as a potential anti-leukemic strategy and provides desirable chemical tool for further understanding METTL3-METTL14 protein functions.


Assuntos
Adenosina , Leucemia Mieloide Aguda , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Metilação , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
16.
Proc Natl Acad Sci U S A ; 121(2): e2219352120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165927

RESUMO

High levels of mitochondrial reactive oxygen species (mROS) are linked to cancer development, which is tightly controlled by the electron transport chain (ETC). However, the epigenetic mechanisms governing ETC gene transcription to drive mROS production and cancer cell growth remain to be fully characterized. Here, we report that protein demethylase PHF8 is overexpressed in many types of cancers, including colon and lung cancer, and is negatively correlated with ETC gene expression. While it is well known to demethylate histones to activate transcription, PHF8 demethylates transcription factor YY1, functioning as a co-repressor for a large set of nuclear-coded ETC genes to drive mROS production and cancer development. In addition to genetically ablating PHF8, pharmacologically targeting PHF8 with a specific chemical inhibitor, iPHF8, is potent in regulating YY1 methylation, ETC gene transcription, mROS production, and cell growth in colon and lung cancer cells. iPHF8 exhibits potency and safety in suppressing tumor growth in cell-line- and patient-derived xenografts in vivo. Our data uncover a key epigenetic mechanism underlying ETC gene transcriptional regulation, demonstrating that targeting the PHF8/YY1 axis has great potential to treat cancers.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , Transformação Celular Neoplásica , Neoplasias Pulmonares/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
17.
Spine J ; 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38219838

RESUMO

Spinal surgery can be associated with significant intraoperative blood loss which may lead to various complications. As the number of patients undergoing spinal surgery increases over time, accurate and effective hemostasis becomes critically important. Despite various surgical hemostatic techniques, conventional interventions such as compression, suture, ligation, and heat-generating cautery, are not suitable for osseous and epidural venous plexus bleeding during spinal procedures. Therefore, a variety of hemostatic agents have been developed to promote hemostasis. As they differ in terms of mechanism, form, application and potential adverse reactions, it is important to understand the natural features of existing agents. Here we comprehensively review currently available topical hemostatic agents from different sources and summarize their mechanisms of action, applications, and current or potential utilization in spinal surgery. We found hemostatic agents from different sources exert hemostatic actions through different mechanisms. In addition, topical hemostatic agents play various roles in spinal surgery including as hemostatic agent, dura mater repair, drug-carrier, skin closure, and fibrosis prevention. Compressive neurological complications are the most common complications of these hemostatic agents. Therefore, optimal use in spinal environments should match their features, indications, and efficacy with clinical conditions.

18.
Acta Pharmacol Sin ; 45(4): 686-703, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38049578

RESUMO

Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most frequently mutated oncogene in human cancers with mutations predominantly occurring in codon 12. These mutations disrupt the normal function of KRAS by interfering with GTP hydrolysis and nucleotide exchange activity, making it prone to the GTP-bound active state, thus leading to sustained activation of downstream pathways. Despite decades of research, there has been no progress in the KRAS drug discovery until the groundbreaking discovery of covalently targeting the KRASG12C mutation in 2013, which led to revolutionary changes in KRAS-targeted therapy. So far, two small molecule inhibitors sotorasib and adagrasib targeting KRASG12C have received accelerated approval for the treatment of non-small cell lung cancer (NSCLC) harboring KRASG12C mutations. In recent years, rapid progress has been achieved in the KRAS-targeted therapy field, especially the exploration of KRASG12C covalent inhibitors in other KRASG12C-positive malignancies, novel KRAS inhibitors beyond KRASG12C mutation or pan-KRAS inhibitors, and approaches to indirectly targeting KRAS. In this review, we provide a comprehensive overview of the molecular and mutational characteristics of KRAS and summarize the development and current status of covalent inhibitors targeting the KRASG12C mutation. We also discuss emerging promising KRAS-targeted therapeutic strategies, with a focus on mutation-specific and direct pan-KRAS inhibitors and indirect KRAS inhibitors through targeting the RAS activation-associated proteins Src homology-2 domain-containing phosphatase 2 (SHP2) and son of sevenless homolog 1 (SOS1), and shed light on current challenges and opportunities for drug discovery in this field.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Descoberta de Drogas , Guanosina Trifosfato , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Antineoplásicos/química , Antineoplásicos/uso terapêutico
19.
Mol Neurobiol ; 61(1): 55-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37581847

RESUMO

Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.


Assuntos
Fatores de Crescimento de Fibroblastos , Proteínas Proto-Oncogênicas c-akt , Traumatismos da Medula Espinal , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Autofagia
20.
Br J Pharmacol ; 181(7): 1068-1090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37850255

RESUMO

BACKGROUND AND PURPOSE: Ischaemia-reperfusion (I/R) injury is a major contributor to skin flap necrosis, which presents a challenge in achieving satisfactory therapeutic outcomes. Previous studies showed that cathelicidin-BF (BF-30) protects tissues from I/R injury. In this investigation, BF-30 was synthesized and its role and mechanism in promoting survival of I/R-injured skin flaps explored. EXPERIMENTAL APPROACH: Survival rate analysis and laser Doppler blood flow analysis were used to evaluate I/R-injured flap viability. Western blotting, immunofluorescence, TdT-mediated dUTP nick end labelling (TUNEL) and dihydroethidium were utilized to examine the levels of apoptosis, pyroptosis, oxidative stress, transcription factor EB (TFEB)-mediated autophagy and molecules related to the adenosine 5'-monophosphate-activated protein kinase (AMPK)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway. KEY RESULTS: The outcomes revealed that BF-30 enhanced I/R-injured island skin flap viability. Autophagy, oxidative stress, pyroptosis and apoptosis were related to the BF-30 capability to enhance I/R-injured flap survival. Improved autophagy flux and tolerance to oxidative stress promoted the inhibition of apoptosis and pyroptosis in vascular endothelial cells. Activation of TFEB increased autophagy and inhibited endothelial cell oxidative stress in I/R-injured flaps. A reduction in TFEB level led to a loss of the protective effect of BF-30, by reducing autophagy flux and increasing the accumulation of reactive oxygen species (ROS) in endothelial cells. Additionally, BF-30 modulated TFEB activity via the AMPK-TRPML1-calcineurin signalling pathway. CONCLUSION AND IMPLICATIONS: BF-30 promotes I/R-injured skin flap survival by TFEB-mediated up-regulation of autophagy and inhibition of oxidative stress, which may have possible clinical applications.


Assuntos
Piroptose , Traumatismo por Reperfusão , Humanos , Espécies Reativas de Oxigênio/metabolismo , Catelicidinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Células Endoteliais/metabolismo , Calcineurina/farmacologia , Autofagia , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA