Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Adv Healthc Mater ; : e2400864, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771618

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting. This article is protected by copyright. All rights reserved.

2.
ACS Nano ; 18(17): 10979-11024, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38635910

RESUMO

Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.


Assuntos
Nanomedicina , Humanos , Animais , Nanoestruturas/química , Genômica
3.
Adv Sci (Weinh) ; : e2305116, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477559

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation of the joints and bone destruction. Because of systemic administration and poor targeting, traditional anti-rheumatic drugs have unsatisfactory treatment efficacy and strong side effects, including myelosuppression, liver or kidney function damage, and malignant tumors. Consequently, mesenchymal stem cells (MSCs)-involved therapy is proposed for RA therapy as a benefit of their immunosuppressive and tissue-repairing effects. This review summarizes the progress of MSCs-involved RA therapy through suppressing inflammation and promoting tissue regeneration and predicts their potential clinical application.

4.
Adv Mater ; 36(13): e2300665, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37437039

RESUMO

Clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) gene-editing technology shows promise for manipulating single or multiple tumor-associated genes and engineering immune cells to treat cancers. Currently, most gene-editing strategies rely on viral delivery; yet, while being efficient, many limitations, mainly from safety and packaging capacity considerations, hinder the use of viral CRISPR vectors in cancer therapy. In contrast, recent advances in non-viral CRISPR/Cas9 nanoformulations have paved the way for better cancer gene editing, as these nanoformulations can be engineered to improve safety, efficiency, and specificity through optimizing the packaging capacity, pharmacokinetics, and targetability. In this review, the advance in non-viral CRISPR delivery is highlighted, and there is a discussion on how these approaches can be potentially used to treat cancers in addressing the aforementioned limitations, followed by the perspectives in designing a proper CRISPR/Cas9-based cancer nanomedicine system with translational potential.


Assuntos
Edição de Genes , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Terapia Genética , Vetores Genéticos , Neoplasias/genética , Neoplasias/terapia
5.
Adv Mater ; : e2305826, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801371

RESUMO

Acute liver failure (ALF) is a life-threatening disease associated with the rapid development of inflammatory storms, reactive oxygen species (ROS) level elevation, and hepatocyte necrosis, which results in high short-term mortality. Except for liver transplantation, no effective strategies are available for ALF therapy due to the rapid disease progression and narrow therapeutic time window. Therefore, there is an urgent demand to explore fast and effective modalities for ALF treatment. Herein, a multifunctional tetrahedral DNA nanoplatform (TDN) is constructed by incorporating the tumor necrosis factor-α siRNA (siTNF-α) through DNA hybridization and antioxidant manganese porphyrin (MnP4) via π-π stacking interaction with G-quadruplex (G4) for surprisingly rapid and significant ALF therapy. TDN-siTNF-α/-G4-MnP4 silences TNF-α of macrophages by siTNF-α and polarizes them to the anti-inflammatory M2 phenotype, providing appropriate microenvironments for hepatocyte viability. Additionally, TDN-siTNF-α/-G4-MnP4 scavenges intracellular ROS by MnP4 and TDN, protecting hepatocytes from oxidative stress-associated cell death. Furthermore, TDN itself promotes hepatocyte proliferation via modulating the cell cycle. TDN-siTNF-α/-G4-MnP4 shows almost complete liver accumulation after intravenous injection and exhibits excellent therapeutic efficacy of ALF within 2 h. The multifunctional DNA nanoformulation provides an effective strategy for rapid ALF therapy, expanding its application for innovative treatments for liver diseases. This article is protected by copyright. All rights reserved.

6.
J Control Release ; 363: 721-732, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741462

RESUMO

The spine is the most common site of bone metastases, as 20%-40% of cancer patients suffer from spinal metastases. Treatments for spinal metastases are scarce and palliative, primarily aiming at relieving bone pain and preserving neurological function. The bioactive agents-mediated therapies are the most effective modalities for treating spinal metastases because they achieve systematic and specific tumor regression. However, the clinical applications of some bioactive agents are limited due to the lack of targeting capabilities, severe side effects, and vulnerability of drug resistance. Fortunately, advanced biomaterials have been developed as excipients to enhance these treatments, including chemotherapy, phototherapy, magnetic hyperthermia therapy, and combination therapy, by improving tumor targeting and enabling sustaining and stimuli-responsive release of various therapeutic agents. Herein, the review summarizes the development of biomaterials-mediated bioactive agents for enhanced treatments of spinal metastases and predicts future research trends.


Assuntos
Neoplasias da Coluna Vertebral , Humanos , Neoplasias da Coluna Vertebral/tratamento farmacológico , Neoplasias da Coluna Vertebral/secundário , Materiais Biocompatíveis/uso terapêutico , Fototerapia
7.
Small Methods ; 7(5): e2300204, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37116170

RESUMO

The immune system takes part in most physiological and pathological processes of the body, including the occurrence and development of cancer. Immunotherapy provides a promising modality for inhibition and even the cure of cancer. During immunotherapy, the immunogenic cell death (ICD) of tumor cells induced by chemotherapy, radiotherapy, phototherapy, bioactive materials, and so forth, triggers a series of cellular responses by causing the release of tumor-associated antigens and damage-associated molecular patterns, which ultimately activate innate and adaptive immune responses. Among them, the ICD-induced biomaterials attract increasing conditions as a benefit of biosafety and multifunctional modifications. This Review summarizes the research progress in biomaterials for inducing ICD via triggering endoplasmic reticulum oxidative stress, mitochondrial dysfunction, and cell membrane rupture and discusses the application prospects of ICD-inducing biomaterials in clinical practice for cancer immunotherapy.


Assuntos
Morte Celular Imunogênica , Neoplasias , Humanos , Materiais Biocompatíveis/uso terapêutico , Neoplasias/tratamento farmacológico , Estresse do Retículo Endoplasmático , Fototerapia
8.
Sci Bull (Beijing) ; 68(3): 284-294, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36732117

RESUMO

The chirality of bioactive molecules is closely related to their functions. D-amino acids commonly distributed in the bacterial cell walls trigger a robust anti-infective immune response. Inspired by that, two kinds of chiral polypeptides, poly(L-phenylalanine)-block-poly(L-lysine) (PL-K) and poly(L-phenylalanine)-block-poly(D-lysine) (PD-K), were synthesized and used as nanoadjuvants of nanovaccines for cancer prevention and therapy. The amphiphilic polypeptides self-assembled into nanoparticles with a diameter of about 30 nm during ultrasonic-assisted dissolution in phosphate-buffered saline. The nanovaccines PL-K-OVA and PD-K-OVA were easily prepared by mixing solutions of PL-K or PD-K and the model antigen chicken ovalbumin (OVA), respectively, with loading efficiencies of almost 100%. Compared to PL-K-OVA, PD-K-OVA more robustly induced dendritic cell maturation, antigen cross-presentation, and adaptive immune response. More importantly, it effectively prevented and treated the OVA-expressed B16-OVA melanoma model. PD-K-OVA achieved a tumor inhibition rate of 94.9% and even 97.0% by combining with anti-PD-1 antibody. Therefore, the chiral polypeptide nanoparticles represent simple, efficient, and extensively applicable nanoadjuvants for various nanovaccines.


Assuntos
Melanoma Experimental , Nanopartículas , Animais , Peptídeos/química , Nanopartículas/química , Ovalbumina/química , Apresentação de Antígeno , Antígenos
9.
Adv Mater ; 35(15): e2203291, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36326058

RESUMO

Biomineralization is a normal physiological process that includes nucleation, crystal growth, phase transformation, and orientation evolution. Notably, artificially induced biomineralization in the tumor tissue has emerged as an unconventional yet promising modality for malignancy therapy. However, the modest ion-chelating capabilities of carboxyl-containing biomineralization initiators lead to a deficient blockade, thus compromising antitumor efficacy. Herein, a biomineralization-inducing nanoparticle (BINP) is developed for blockade therapy of osteosarcoma. BINP is composed of dodecylamine-poly((γ-dodecyl-l-glutamate)-co-(l-histidine))-block-poly(l-glutamate-graft-alendronate) and combines a cytomembrane-insertion moiety, a tumor-microenvironment (TME)-responsive component, and an ion-chelating motif. After intravenous injection into osteosarcoma-bearing mice, BINP responds to the acidic TME to expose the dodecyl group on the surface of the expanded nanoparticles, facilitating their cytomembrane insertion. Subsequently, the protruding bisphosphonic acid group triggers continuous ion deposition to construct a mineralized barrier around the tumor, which blocks substance exchange between the tumor and surrounding normal tissues. The BINP-mediated blockade therapy displays tumor inhibition rates of 59.3% and 52.1% for subcutaneous and orthotopic osteosarcomas, respectively, compared with the Control group. In addition, the suppression of osteoclasts by the alendronate moiety alleviates bone dissolution and further inhibits pulmonary metastases. Hence, the BINP-initiated selective biomineralization provides a promising alternative for clinical osteosarcoma therapy.


Assuntos
Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Animais , Camundongos , Biomineralização , Alendronato , Ácido Glutâmico , Osteossarcoma/tratamento farmacológico , Peptídeos , Nanopartículas/química , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Front Immunol ; 13: 1012927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389700

RESUMO

Immunotherapy has paved the way for the future of cancer therapy, but there are still significant challenges to be overcome, such as the occurrence of immune escape or suppression. Adenosine is essential in modulating the immune responses of immune cells and maintaining immune tolerance. Emerging adenosine pathway inhibitors are considered a breakthrough in cancer immunotherapy, with emphasis first being placed on the top-down blockade of adenosine signaling axis, followed by combination therapy. However, these therapeutic strategies rely on adenosine inhibitors, mainly small molecules or antibody proteins, which are limited by a single route of administration and off-target toxicity. Therefore, synergistic nanomedicine with accurate delivery targeting deeper tumors is focused on in preclinical studies. This review discusses how adenosine reshapes immunosuppressive microenvironments through its effects on immune cells, including lymphocytes and myeloid cells. Additionally, it will be the first discussion of a comprehensive strategy of biomaterials in modulating the adenosine signaling pathway, including inhibition of adenosine production, inhibition of adenosine binding to immune cells, and depletion of adenosine in the microenvironments. Furthermore, biomaterials integrating multiple therapeutic modalities with adenosine blocking are also discussed as a promising strategy for promoting cancer immunotherapy.


Assuntos
Adenosina , Neoplasias , Humanos , Adenosina/metabolismo , Materiais Biocompatíveis/farmacologia , Imunoterapia , Neoplasias/patologia , Transdução de Sinais , Microambiente Tumoral
13.
Angew Chem Int Ed Engl ; 61(47): e202211136, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069260

RESUMO

The toxicity of drugs causes various adverse effects in patients. While antidotes that neutralize drug toxicity help reduce systemic damage during clinical therapy, these antidotes are generally accompanied by the loss of drug efficacy. Herein, the spatiotemporally targeted polycystine-based nanoantidotes were designed as a neutralizer of cisplatin (CDDP) to decrease its toxicity without affecting its anticancer efficacy. The nanoantidotes administered before CDDP selectively accumulated in the liver and kidney and then firmly bound to CDDP through the highly stable Pt-S bond during subsequent chemotherapy. This two-step administration strategy reduced the level of Pt in normal organs, shortened the half-life of CDDP in plasma, and increased the tolerance to CDDP. More importantly, the nanoantidotes maintained the anticancer efficacy of CDDP after reducing systemic toxicity, indicating its great potential in expanding the clinical application of CDDP.


Assuntos
Antineoplásicos , Cisplatino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Antídotos/metabolismo , Antídotos/farmacologia , Rim/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo
14.
Adv Mater ; 34(36): e2202044, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785450

RESUMO

Engineering a proper immune response following biomaterial implantation is essential to bone tissue regeneration. Herein, a biomimetically hierarchical scaffold composed of deferoxamine@poly(ε-caprolactone) nanoparticles (DFO@PCL NPs), manganese carbonyl (MnCO) nanosheets, gelatin methacryloyl hydrogel, and a polylactide/hydroxyapatite (HA) matrix is fabricated to augment bone repair by facilitating the balance of the immune system and bone metabolism. First, a 3D printed stiff scaffold with a well-organized gradient structure mimics the cortical and cancellous bone tissues; meanwhile, an inside infusion of a soft hydrogel further endows the scaffold with characteristics of the extracellular matrix. A Fenton-like reaction between MnCO and endogenous hydrogen peroxide generated at the implant-tissue site triggers continuous release of carbon monoxide and Mn2+ , thus significantly lessening inflammatory response by upregulating the M2 phenotype of macrophages, which also secretes vascular endothelial growth factor to induce vascular formation. Through activating the hypoxia-inducible factor-1α pathway, Mn2+ and DFO@PCL NP further promote angiogenesis. Moreover, DFO inhibits osteoclast differentiation and synergistically collaborates with the osteoinductive activity of HA. Based on amounts of data in vitro and in vivo, strong immunomodulatory, intensive angiogenic, weak osteoclastogenic, and superior osteogenic abilities of such an osteoimmunity-regulating scaffold present a profound effect on improving bone regeneration, which puts forward a worthy base and positive enlightenment for large-scale bone defect repair.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Regeneração Óssea , Durapatita/química , Gelatina , Hidrogéis/metabolismo , Metacrilatos , Osteogênese , Engenharia Tecidual , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
J Mater Chem B ; 10(37): 7173-7182, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35662309

RESUMO

Polypeptide-based nanoparticles are one of the promising excipients of nanomedicines due to their excellent biosafety and flexible modification. Among all the types of polypeptide nanoparticles, polycystine (PCys2)-based ones draw increasing attention due to their unique properties. On the one hand, the uniformed nanogels can be easily obtained through the crosslinking of two active centers during polymerization without additional step of self-assembly. On the other hand, the Cys2-based nanoparticles always showed reduction-responsiveness owing to the inherent disulfide bond. With the development of advanced diagnostic and therapeutic technologies, the multi-functional PCys2-based nanoparticles were achieved via rational construction of the polymer structure. This review summarizes the overall development of Cys2-based polypeptide nanoparticles, especially the structural design for the generation of multi-functional nanoparticles, along with their corresponding biomedical applications.


Assuntos
Excipientes , Nanopartículas , Dissulfetos , Nanogéis , Nanopartículas/química , Peptídeos , Polímeros/química
16.
Asian J Pharm Sci ; 17(1): 1-3, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35261641

RESUMO

Image, graphical abstract.

17.
Adv Mater ; 34(21): e2200449, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35291052

RESUMO

Various macro/microscopic biomaterials have been developed for controlled drug delivery in the combination therapy of malignancies. However, uncertain loading ratio, release sequence, and spatiotemporal distribution of drugs hinder their synergistic therapeutic effects and clinical applications. In this work, a tumor microenvironments-adapted composite consisting of a thermosensitive hydrogel and a reactive oxygen species (ROS)-responsive nanogel is developed for precisely sequential drug release to enhance molecularly targeted therapy and amplify immune activation. LY3200882 (LY), a selective transforming growth factor-ß (TGF-ß) inhibitor, is encapsulated in the ROS-responsive nanogel and dispersed uniformly with regorafenib (REG) in a thermosensitive hydrogel (Gel/(REG+NG/LY)). After in situ administration, REG is preferentially released from the hydrogel to inhibit tumor growth and promote ROS generation, which triggers the subsequent on-demand release of LY from the nanogel. LY contributes to preventing the epithelial-mesenchymal transition and immune escape of tumor cells induced by elevated TGF-ß. In subcutaneous and orthotopic colorectal tumor bearing mouse models, Gel/(REG+NG/LY) effectively inhibits tumor growth and liver metastases by increasing the tumor infiltration of CD8+ T cells, reducing the recruitment of tumor-associated macrophages and myeloid-derived suppressor cells, and promoting the polarization of macrophages from M2 to M1 type, indicating the significant potential in improving the prognosis of advanced cancer patients.


Assuntos
Antineoplásicos , Hidrogéis , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Humanos , Camundongos , Nanogéis , Peptídeos , Espécies Reativas de Oxigênio , Fator de Crescimento Transformador beta , Microambiente Tumoral
18.
Adv Mater ; 34(19): e2110094, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35202501

RESUMO

Tumor blockade therapy is a promising penetration-independent antitumor modality, which effectively inhibits the exchange of nutrients, oxygen, and information between the tumor and surrounding microenvironments. However, the current blockade therapy strategies have limited antitumor efficacy due to defects of inadequate tumor obstruction, possible side effects, and short duration. For these reasons, a facilely synthesized versatile polymer 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-alendronate (DSPE-PEG-ALN, DPA) is developed to initiate the formation of biomineral shell around osteosarcoma as a potent physical barrier. The DSPE moiety shares a similar chemical structure with the cytomembrane, allowing the membrane insertion of DPA. The bisphosphonic acid groups in ALN attract ions to realize biomineralization around cells. After injection in the invasive osteosarcoma tissue, DPA inserts into the cytomembrane, induces continuous mineral deposition, and ultimately builds a physical barrier around the tumor. Meanwhile, ALN in DPA alleviates bone destruction by suppressing the activity of osteoclasts. Through hindering the exchange of necessary substances, the biomineralization coating inhibits the growth of primary osteosarcoma and pulmonary metastasis simultaneously. Therefore, the multifunctional polymer-initiating blockade therapy provides a promising modality for tumor inhibition in clinics with high efficacy and negligible side effects.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Biomineralização , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Polietilenoglicóis/química , Polímeros/química , Microambiente Tumoral
19.
Adv Sci (Weinh) ; 9(12): e2103875, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182046

RESUMO

The treatment of peripheral nerve defects has always been one of the most challenging clinical practices in neurosurgery. Currently, nerve autograft is the preferred treatment modality for peripheral nerve defects, while the therapy is constantly plagued by the limited donor, loss of donor function, formation of neuroma, nerve distortion or dislocation, and nerve diameter mismatch. To address these clinical issues, the emerged nerve guide conduits (NGCs) are expected to offer effective platforms to repair peripheral nerve defects, especially those with large or complex topological structures. Up to now, numerous technologies are developed for preparing diverse NGCs, such as solvent casting, gas foaming, phase separation, freeze-drying, melt molding, electrospinning, and three-dimensional (3D) printing. 3D printing shows great potential and advantages because it can quickly and accurately manufacture the required NGCs from various natural and synthetic materials. This review introduces the application of personalized 3D printed NGCs for the precision repair of peripheral nerve defects and predicts their future directions.


Assuntos
Regeneração Nervosa , Nervos Periféricos , Nervos Periféricos/fisiologia , Impressão Tridimensional , Alicerces Teciduais/química
20.
ACS Appl Mater Interfaces ; 14(1): 1-19, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34939784

RESUMO

Compared with traditional internal fixation devices, bone adhesives are expected to exhibit remarkable advantages, such as improved fixation of comminuted fractures and maintained spatial location of fractured scattered bone pieces in treating bone injuries. In this review, different bone adhesives are summarized from the aspects of bone tissue engineering, and the applications of bone adhesives are emphasized. The concepts of "liquid scaffold" and "liquid plate" are proposed to summarize two different research directions of bone adhesives. Furthermore, significant advances of bone adhesives in recent years in mechanical strength, osseointegration, osteoconductivity, and osteoinductivity are discussed. We conclude this topic by providing perspectives on the state-of-the-art research progress and future development trends of bone adhesives. We hope this review will provide a comprehensive summary of bone adhesives and inspire more extensive and in-depth research on this subject.


Assuntos
Consolidação da Fratura/efeitos dos fármacos , Fraturas Ósseas/tratamento farmacológico , Substâncias Macromoleculares/farmacologia , Adesivos Teciduais/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Substâncias Macromoleculares/química , Osseointegração/efeitos dos fármacos , Adesivos Teciduais/química , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA