Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Metab ; 75: 101766, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406987

RESUMO

Sufficient evidence has linked many different types of cancers and T2D through shared risk factors; however, the underlying mechanisms are not fully understood. α-Hydroxybutyrate (α-HB), a byproduct metabolite increased in diabetes and cancer, including colorectal cancer (CRC), triggers lactate dehydrogenase A (LDHA) nuclear translocation. Nuclear LDHA markedly extends NF-κB nuclear retention by interacting with phosphorylated p65, leading to an increase in TNF-α production, impaired insulin secretion and the exacerbation of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC and high-fat diet (HFD)-induced type 2 diabetes. Furthermore, metformin interrupted this process by inhibiting the transcription of FOXM1 and c-MYC, the resultant downregulation of LDHA expression and α-HB-induced LDHA nuclear translocation. Thus, the results reveal the elevated α-HB level could be a novel shared risk factor of linking CRC, diabetes and the use of metformin treatment, as well as highlight the importance of preventing NF-κB activation for protecting against cancer and diabetes.


Assuntos
Neoplasias Colorretais , Diabetes Mellitus Tipo 2 , Humanos , NF-kappa B/metabolismo , Diabetes Mellitus Tipo 2/complicações , Neoplasias Colorretais/metabolismo , Transdução de Sinais
2.
Cell Death Dis ; 14(6): 351, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291119

RESUMO

In addition to the classical role as a serum effector system of innate immunity, accumulating evidence suggests that intracellular complement components have indispensable functions in immune defense, T cell homeostasis, and tumor cell proliferation and metastasis. Here, we revealed that complement component 3 (C3) is remarkably upregulated in paclitaxel (PTX)-resistant non-small cell lung cancer (NSCLC) cells and that knockdown of C3 promoted PTX-induced cell apoptosis, sensitizing resistant cells to PTX therapy. Ectopic C3 decreased PTX-induced apoptosis and induced resistance to PTX treatment in original NSCLC cells. Interestingly, C3b, the activated fragment of C3, was found to translocate into the nucleus and physically associate with the HDAC1/2-containing SIN3A complex to repress the expression of GADD45A, which plays an important role in cell growth inhibition and apoptosis induction. Importantly, C3 downregulated GADD45A by enhancing the binding of the SIN3A complex with the promoter of GADD45A, thus decreasing the H3Ac level to compress chromatin around the GADD45A locus. Subsequently, ectopic GADD45A promoted PTX-induced cell apoptosis, sensitizing resistant cells to PTX therapy, and insufficiency of GADD45A in original cancer cells induced resistance to PTX treatment. These findings identify a previously unknown nucleus location and oncogenic property for C3 in chemotherapy and provide a potential therapeutic opportunity to overcome PTX resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Paclitaxel , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Complemento C3b , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Histona Desacetilase 1/genética
3.
J Am Chem Soc ; 145(3): 1548-1556, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36637214

RESUMO

Poly(ethylene oxide) has been widely investigated as a potential separator for solid-state lithium metal batteries. However, its applications were significantly restricted by low ionic conductivity and a narrow electrochemical stability window (<4.0 V vs Li/Li+) at room temperature. Herein, a novel molecular self-assembled ether-based polyrotaxane electrolyte was designed using different functional units and prepared by threading cyclic 18-crown ether-6 (18C6) to linear poly(ethylene glycol) (PEG) via intermolecular hydrogen bond and terminating with hexamethylene diisocyanate trimer (HDIt), which was strongly confirmed by local structure-sensitive solid/liquid-state nuclear magnetic resonance (NMR) techniques. The designed electrolyte has shown an obviously increased room-temperature ionic conductivity of 3.48 × 10-4 S cm-1 compared to 1.12 × 10-5 S cm-1 without assembling polyrotaxane functional units, contributing to the enhanced cycling stability of batteries with both LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathode materials. This advanced molecular self-assembled strategy provides a new paradigm in designing solid polymer electrolytes with demanded performance for lithium metal batteries.

4.
Cancer Immunol Res ; 10(12): 1475-1489, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36206575

RESUMO

T cell-mediated immunotherapy represents a promising strategy for cancer treatment; however, it has achieved satisfactory clinical responses in only a limited population. Thus, a broader view of the T-cell immune response is required. The Ras/MAPK pathway operates in many important signaling cascades and regulates multiple cellular activities, including T-cell development, proliferation, and function. Herein, we found that the typical membrane-bound complement regulatory protein CD59 is located intracellularly in T cells and that the intracellular form is increased in the T cells of patients with cancer. When intracellular CD59 is abundant, it facilitates Ras transport to the inner plasma membrane via direct interaction; in contrast, when CD59 is insufficient or deficient, Ras is arrested in the Golgi, thus enhancing Ras/MAPK signaling and T-cell activation, proliferation, and function. mCd59ab deficiency almost completely abolished tumor growth and metastasis in tumor-bearing mice, in which CD4+ and CD8+ T cells were significantly increased compared with their proportions in wild-type littermates, and their proportions were inversely correlated with tumor growth. Using bone marrow transplantation and CD4+ and CD8+ T-cell depletion assays, we further demonstrated the critical roles of these cells in the potent antitumor activity induced by mCd59ab deficiency. Reducing CD59 expression also enhanced MAPK signaling and T-cell activation in human T cells. Therefore, the subcellular compartmentalization of Ras regulated by intracellular CD59 provides spatial selectivity for T-cell activation and a potential T cell-mediated immunotherapeutic strategy.


Assuntos
Ativação Linfocitária , Neoplasias , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Proteínas do Sistema Complemento , Imunoterapia , Neoplasias/terapia , Antígenos CD59
5.
Proc Natl Acad Sci U S A ; 119(33): e2122716119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35960843

RESUMO

The microenvironment of malignant melanomas defines the properties of tumor blood vessels and regulates infiltration and vascular dissemination of immune and cancer cells, respectively. Previous research in other cancer entities suggested the complement system as an essential part of the tumor microenvironment. Here, we confirm activation of the complement system in samples of melanoma patients and murine melanomas. We identified the tumor endothelium as the starting point of the complement cascade. Generation of complement-derived C5a promoted the recruitment of neutrophils. Upon contact with the vascular endothelium, neutrophils were further activated by complement membrane attack complexes (MACs). MAC-activated neutrophils release neutrophil extracellular traps (NETs). Close to the blood vessel wall, NETs opened the endothelial barrier as indicated by an enhanced vascular leakage. This facilitated the entrance of melanoma cells into the circulation and their systemic spread. Depletion of neutrophils or lack of MAC formation in complement component 6 (C6)-deficient animals protected the vascular endothelium and prevented vascular intravasation of melanoma cells. Our data suggest that inhibition of MAC-mediated neutrophil activation is a potent strategy to abolish hematogenous dissemination in melanoma.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento , Endotélio Vascular , Armadilhas Extracelulares , Melanoma , Neutrófilos , Microambiente Tumoral , Animais , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Proteínas do Sistema Complemento , Endotélio Vascular/fisiopatologia , Humanos , Melanoma/irrigação sanguínea , Melanoma/imunologia , Melanoma/patologia , Camundongos , Neutrófilos/imunologia , Permeabilidade
6.
Cell Rep ; 39(9): 110851, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649359

RESUMO

Complement is operative in not only the extracellular but also the intracellular milieu. However, little is known about the role of complement activation inside tumor cells. Here, we report that intracellular C5 is cleaved by cathepsin D (CTSD) to produce C5a in lysosomes and endosomes of colonic cancer cells. After stimulation by C5a, intracellular C5aR1 assembles a complex with KCTD5/cullin3/Roc-1 and ß-catenin to promote the switch of polyubiquitination of ß-catenin from K48 to K63, which enhances ß-catenin stability. Genetic loss or pharmacological blockade of C5aR1 dramatically impedes colorectal tumorigenesis at least by destabilizing ß-catenin. In human colorectal cancer specimens, high levels of C5aR1, C5a, and CTSD are closely correlated with elevated ß-catenin levels and a poor prognosis. Importantly, intracellular C5a/C5aR1-mediated ß-catenin stabilization is also observed ubiquitously in other cell types. Collectively, we identify a machinery for ß-catenin activation and provide a potential target for tumor prevention and treatment.


Assuntos
Neoplasias Colorretais , Complemento C5a , Carcinogênese , Ativação do Complemento , Complemento C5a/metabolismo , Humanos , Canais de Potássio , beta Catenina/metabolismo
7.
Front Immunol ; 13: 746068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154091

RESUMO

Antibody-induced complement activation may cause injury of the neuromuscular junction (NMJ) and is thus considered as a primary pathogenic factor in human myasthenia gravis (MG) and animal models of experimental autoimmune myasthenia gravis (EAMG). In this study, we tested whether CRIg/FH, a targeted complement inhibitor, could attenuate NMJ injury in rat MG models. We first demonstrated that CRIg/FH could inhibit complement-dependent cytotoxicity on human rhabdomyosarcoma TE671 cells induced by MG patient-derived IgG in vitro. Furthermore, we investigated the therapeutic effect of CRIg/FH in a passive and an active EAMG rodent model. In both models, administration of CRIg/FH could significantly reduce the complement-mediated end-plate damage and suppress the development of EAMG. In the active EAMG model, we also found that CRIg/FH treatment remarkably reduced the serum concentration of autoantibodies and of the cytokines including IFN-γ, IL-2, IL-6, and IL-17, and upregulated the percentage of Treg cells in the spleen, which was further verified in vitro. Therefore, our findings indicate that CRIg/FH may hold the potential for the treatment of MG via immune modulation.


Assuntos
Inativadores do Complemento/farmacologia , Imunomodulação/efeitos dos fármacos , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/prevenção & controle , Proteínas Recombinantes de Fusão/farmacologia , Animais , Autoanticorpos/imunologia , Autoimunidade , Diferenciação Celular , Linhagem Celular , Ativação do Complemento/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Imunoglobulina G/imunologia , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Miastenia Gravis Autoimune Experimental/diagnóstico , Ratos , Índice de Gravidade de Doença , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
8.
Front Oncol ; 11: 736725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595119

RESUMO

BACKGROUND: C5AR2 (GPR77, C5L2) is the second receptor for C5a that is a potent protein generated by complement activation. C5AR2 can mediate its own signaling events and exert significant immunomodulatory effects through those events. However, research of C5AR2 in cancer is limited, and its function remains unclear in breast cancer. METHODS: The expression of C5AR2 and its correlations with prognosis, immune infiltration, tumor mutation burden (TMB), and microsatellite instability (MSI) in more than thirty types of cancers were described through GTEx, TCGA, PrognoScan, TIMER2.0, CCLE, HPA, and TISIDB database. C5AR2 showed strong relationships to those immune marker sets in breast cancer. Otherwise, CCK8 assay and Transwell assay were conducted to illustrate the role of C5AR2 in migration, invasion, and proliferation of breast cancer cells. RESULTS: Generally, C5AR2 expression differed across most cancerous and noncancerous tissues, and high C5AR2 expression significantly related to poor prognosis in BRCA, GBM, KICH, LAML, LGG, LIHC, PAAD, and STAD. Moreover, C5AR2 expression levels were dramatically correlated with recognized immune infiltration, especially the polarization of macrophages in breast cancer. Gene set enrichment analysis confirmed that C5AR2 participates in regulating multiple signaling pathways involved in tumorigenesis as well as tumor immunity. C5AR2 overexpression facilitated the functions such as migration, invasion, and proliferation in breast cancer cells, which is consistent with bioinformatics analysis. CONCLUSIONS: C5AR2 is involved in immune infiltration and malignant characteristics of breast cancer, which may be a prospective biomarker for breast cancer.

9.
Mol Oncol ; 15(5): 1466-1485, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33314660

RESUMO

Tumor growth, especially in the late stage, requires adequate nutrients and rich vasculature, in which PKM2 plays a convergent role. It has been reported that PKM2, together with FOXM1D, is upregulated in late-stage colorectal cancer and associated with metastasis; however, their underlying mechanism for promoting tumor progression remains elusive. Herein, we revealed that FOXM1D potentiates PKM2-mediated glycolysis and angiogenesis through multiple protein-protein interactions. In the presence of FBP, FOXM1D binds to tetrameric PKM2 and assembles a heterooctamer, restraining PKM2 metabolic activity by about a half and thereby promoting aerobic glycolysis. Furthermore, FOXM1D interacts with PKM2 and NF-κB and induces their nuclear translocation with the assistance of the nuclear transporter importin 4. Once in the nucleus, PKM2 and NF-κB complexes subsequently augment VEGFA transcription. The increased VEGFA is secreted extracellularly via exosomes, an event potentiated by the interaction of FOXM1 with VPS11, eventually promoting tumor angiogenesis. Based on these findings, our study provides another insight into the role of PKM2 in the regulation of glycolysis and angiogenesis.


Assuntos
Proteínas de Transporte/fisiologia , Proteína Forkhead Box M1/fisiologia , Glicólise/genética , Proteínas de Membrana/fisiologia , Neoplasias , Neovascularização Patológica , Hormônios Tireóideos/fisiologia , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteína Forkhead Box M1/metabolismo , Células HEK293 , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neoplasias/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Ligação Proteica/genética , Isoformas de Proteínas , Transporte Proteico/genética , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
10.
Theranostics ; 10(19): 8619-8632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754267

RESUMO

Numerous factors have been claimed to play important roles in colorectal cancer (CRC) tumorigenesis, including myeloid-derived suppressor cells (MDSCs) and other immune cells, cytokines, and chemokines; however, the precise mechanisms of colorectal tumorigenesis remain elusive, and there is a lack of effective preventive treatments. Here, we investigated the role of complement system, a key regulator of immune surveillance and homeostasis, in colorectal tumorigenesis. Methods: The prototypical CRC model was induced by combined administration of azoxymethane (AOM)/ dextran sulfate sodium (DSS) in Wild-type (WT), C3-, C5-, C5ar1-, and C5ar2-deficient mice. Using flow cytometry, immunohistochemical staining and multiplex bead assay, we profiled the immune cells, cytokines and chemokines. Bone marrow transplantation was employed to determine the contribution of immune cells in colorectal tumorigenesis. Further, we used C5aR1 antagonist PMX205 to investigate the protective role in colorectal tumorigenesis. Results: Complement was extensively activated in inflamed tissues of AOM/DSS-induced murine CRC model, leading to multifaceted consequences. The deficiency of complement C5 or especially C5ar1, but not C3 almost completely prevented CRC tumorigenesis. C5a/C5aR1 signaling recruited MDSCs into the inflamed colorectum to impair CD8+ T cells, and modulated the production of critical cytokines and chemokines, thus initiating CRC. Moreover, the C5aR1 antagonist PMX205 strongly impeded colorectal tumorigenesis. Bone marrow transplantation further revealed that C5aR1 expression by immune cells was critical for colorectal tumorigenesis. Conclusion: Our study identifies C5a/C5aR1 signaling as a vital immunomodulatory program in CRC tumorigenesis and suggests a feasible preventive strategy.


Assuntos
Azoximetano/efeitos adversos , Linfócitos T CD8-Positivos/metabolismo , Colite/complicações , Neoplasias Colorretais/imunologia , Sulfato de Dextrana/efeitos adversos , Receptor da Anafilatoxina C5a/genética , Animais , Transplante de Medula Óssea , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Complemento C3/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Masculino , Camundongos , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/farmacologia
12.
Theranostics ; 10(7): 3151-3163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194860

RESUMO

Up to one-third of diffuse large B cell lymphoma (DLBCL) patients eventually develop resistance to R-CHOP regimen, while the remaining therapeutic options are limited. Thus, understanding the underlying mechanisms and developing therapeutic approaches are urgently needed. Methods: We generated two germinal center B cell-like (GCB) and activated B cell-like (ABC) subtype R-CHO resistant DLBCL cell lines, of which the tumor-initiating capacity was evaluated by serial-transplantation and stemness-associated features including CD34 and CD133 expression, side population and ALDH1 activity were detected by flow cytometry or immunoblotting. Expression profiles of these resistant cells were characterized by RNA sequencing. The susceptibility of resistant cells to different treatments was evaluated by in vitro CytoTox-glo assay and in tumor-bearing mice. The expression levels of SOX2, phos-AKT, CDK6 and FGFR1/2 were detected in 12 R-CHOP-resistant DLBCL clinical specimens by IHC. Results: The stem-like CSC proportion significantly increased in both resistant DLBCL subtypes. SOX2 expression level remarkably elevated in both resistant cell lines due to its phosphorylation by activated PI3K/AKT signaling, thus preventing ubiquitin-mediated degradation. Further, multiple factors, including BCR, integrins, chemokines and FGFR1/2 signaling, regulated PI3K/AKT activation. CDK6 in GCB subtype and FGFR1/2 in ABC subtype were SOX2 targets, whose inhibition potently re-sensitized resistant cells to R-CHOP treatment. More importantly, addition of PI3K inhibitor to R-CHOP completely suppressed the tumor growth of R-CHO-resistant DLBCL cells, most likely by converting CSCs to chemo-sensitive differentiated cells. Conclusions: The PI3K/AKT/SOX2 axis plays a critical role in R-CHOP resistance development and the pro-differentiation therapy against CSCs proposed in this study warrants further study in clinical trials for the treatment of resistant DLBCL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fatores de Transcrição SOXB1/antagonistas & inibidores , Aminopiridinas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Benzimidazóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoquinolinas/farmacologia , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Camundongos SCID , Proteínas de Neoplasias/análise , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosforilação , Piperazinas/farmacologia , Prednisona/administração & dosagem , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Purinas/farmacologia , Pirazóis/farmacologia , Rituximab/administração & dosagem , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/análise , Ubiquitinação , Vincristina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Commun Signal ; 17(1): 4, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642362

RESUMO

BACKGROUND: As the first member of the metastasis-associated protein (MTA) family, MTA1 and another MTA family member, MTA2, have both been reported to promote breast cancer progression and metastasis. However, the difference and relationship between MTA1 and MTA2 have not been fully elucidated. METHODS: Transwell assays were used to assess the roles of MTA1 and MTA2 in the metastasis of ZR-75-30 luminal B breast cancer cells in vitro. Immunoblotting and qRT-PCR were used to evaluate the effect of MTA1 overexpression on MTA2. Proteases that cleave MTA2 were predicted using an online web server. The role of neutrophil elastase (NE) in MTA1 overexpression-induced MTA2 downregulation was confirmed by specific inhibitor treatment, knockdown, overexpression and immunocytochemistry, and NE cleavage sites in MTA2 were confirmed by MTA2 truncation and mutation. The effect of MTA1 overexpression on the intrinsic inhibitor of NE, elafin, was detected by qRT-PCR, immunoblotting and treatment with inhibitors. RESULTS: MTA1 overexpression inhibited, while MTA2 promoted the metastasis of ZR-75-30 cells in vitro. MTA1 overexpression downregulated MTA2 expression at the protein level rather than the mRNA level. NE was predicted to cleave MTA2 and was responsible for MTA1 overexpression-induced MTA2 degradation. NE was found to cleave MTA2 in the C-terminus at the 486, 497, 542, 583 and 621 sites. MTA1 overexpression activated NE by downregulating elafin in a histone deacetylase- and DNA methyltransferase-dependent manner. CONCLUSIONS: MTA1 and MTA2 play opposing roles in the metastasis of ZR-75-30 luminal B breast cancer cells in vitro. MTA1 downregulates MTA2 at the protein level by epigenetically repressing the expression of elafin and releasing the inhibition of neutrophil elastase, which cleaves MTA2 in the C-terminus at multiple specific sites.


Assuntos
Histona Desacetilases/metabolismo , Proteólise , Proteínas Repressoras/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Regulação para Baixo/genética , Elafina/farmacologia , Histona Desacetilases/química , Humanos , Elastase de Leucócito/antagonistas & inibidores , Elastase de Leucócito/metabolismo , Modelos Biológicos , Metástase Neoplásica , Proteínas Repressoras/química , Transativadores
14.
Cell Prolif ; 52(2): e12553, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30485581

RESUMO

OBJECTIVES: We aimed to elucidate the role and molecular mechanisms of FOXM1 in regulating metastasis in oesophageal squamous cell carcinoma (ESCC) as well as its clinical implications. MATERIALS AND METHODS: The expression levels of four isoforms of FOXM1 were analysed by real-time PCR. Next, genetically modification using overexpression and RNAi systems and transwell were employed to examine FOXM1c function in invasion and migration. Dual luciferase and ChIP assays were performed to decipher the underlying mechanism for transcriptional regulation. The expression levels of FOXM1 and IRF1 were determined by immunohistochemistry staining in ESCC specimens. RESULTS: The FOXM1c was predominantly overexpressed in ESCC cell lines compared to the other FOXM1 isoforms. Ectopic expression of FOXM1c promoted invasion and migration of ESCC cells lines, whereas downregulation of FOXM1c inhibited these processes. Moreover, FOXM1c expression was positively correlated with IRF1 expression in ESCC cell lines and tumour specimens. IRF1 is, at least in part, responsible for FOXM1c-mediated invasion and migration. Mechanistically, we identified IRF1 as a transcriptional target of FOXM1c and found a FOXM1c-binding site in the IRF1 promoter region. Furthermore, high expression levels of both FOXM1c and IRF1 were positively associated with low survival rate and predicted a poor prognosis of oesophageal cancer patients. CONCLUSION: FOXM1c promotes the metastasis by transcriptionally targeting IRF1 and may serve as a potential prognostic predictor for oesophageal cancer.


Assuntos
Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica , Fator Regulador 1 de Interferon/genética , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Invasividade Neoplásica/patologia
15.
Cell Death Dis ; 10(1): 8, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30584254

RESUMO

An intensive short-term chemotherapy regimen has substantially prolonged the overall survival of Burkitt's lymphoma (BL) patients, which has been further improved by addition of rituximab. However, the inevitable development of resistance to rituximab and the toxicity of chemotherapy remain obstacles. We first prepared two BL cell lines resistant to rituximab-mediated CDC. Using a phosphorylation antibody microarray, we revealed that PI3K/AKT pathway contained the most phosphorylated proteins/hits, while apoptosis pathway that may be regulated by PKC displayed the greatest fold enrichment in the resistant cells. The PI3K/AKT inhibitor IPI-145 failed to reverse the resistance. In contrast, the pan-PKC inhibitor midostaurin exhibited potent antitumor activity in both original and resistant cells, alone or in combination with rituximab. Notably, midostaurin promoted apoptosis by reducing the phosphorylation of PKC and consequently of downstream Bad, Bcl-2 and NF-κB. Therefore, midostaurin improved rituximab activity by supplementing pro-apoptotic effects. In vivo, midostaurin alone powerfully prolonged the survival of mice bearing the resistant BL cells compared to rituximab alone treatments. Addition of midostaurin to rituximab led to dramatically improved survival compared to rituximab but not midostaurin monotherapy. Our findings call for further evaluation of midostaurin alone or in combination with rituximab in treating resistant BL in particular.


Assuntos
Apoptose/efeitos dos fármacos , Linfoma de Burkitt/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Rituximab/farmacologia , Estaurosporina/análogos & derivados , Animais , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Estaurosporina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Immunol ; 201(12): 3717-3730, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429287

RESUMO

Complement activation is involved in the pathogenesis of ischemia reperfusion injury (IRI), which is an inevitable process during kidney transplantation. Therefore, complement-targeted therapeutics hold great potential in protecting the allografts from IRI. We observed universal deposition of C3d and membrane attack complex in human renal allografts with delayed graft function or biopsy-proved rejection, which confirmed the involvement of complement in IRI. Using FB-, C3-, C4-, C5-, C5aR1-, C5aR2-, and C6-deficient mice, we found that all components, except C5aR2 deficiency, significantly alleviated renal IRI to varying degrees. These gene deficiencies reduced local (deposition of C3d and membrane attack complex) and systemic (serum levels of C3a and C5a) complement activation, attenuated pathological damage, suppressed apoptosis, and restored the levels of multiple local cytokines (e.g., reduced IL-1ß, IL-9, and IL-12p40 and increased IL-4, IL-5, IL-10, and IL-13) in various gene-deficient mice, which resulted in the eventual recovery of renal function. In addition, we demonstrated that CRIg/FH, which is a targeted complement inhibitor for the classical and primarily alternative pathways, exerted a robust renoprotective effect that was comparable to gene deficiency using similar mechanisms. Further, we revealed that PI3K/AKT activation, predominantly in glomeruli that was remarkably inhibited by IRI, played an essential role in the CRIg/FH renoprotective effect. The specific PI3K antagonist duvelisib almost completely abrogated AKT phosphorylation, thus abolishing the renoprotective role of CRIg/FH. Our findings suggested that complement activation at multiple stages induced renal IRI, and CRIg/FH and/or PI3K/AKT agonists may hold the potential in ameliorating renal IRI.


Assuntos
Complemento C3d/metabolismo , Função Retardada do Enxerto/imunologia , Rejeição de Enxerto/imunologia , Transplante de Rim , Rim/patologia , Receptores de Complemento 3b/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Células Cultivadas , Ativação do Complemento , Complemento C3d/genética , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Citocinas/metabolismo , Humanos , Isoantígenos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Transplante Homólogo
17.
Cell Death Dis ; 9(9): 887, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166523

RESUMO

Radiation therapy is an important treatment modality for esophageal cancer. However, acquisition of radioresistance ultimately results in esophageal cancer relapse. CD59, a membrane-bound complement regulatory protein, can transduce signals via a Src kinase in the lipid raft, thus playing a complement-independent role. However, the effect of CD59 on the esophageal cancer response to ionizing radiation remains unclear. In this study, we found that the expression level of CD59 was positively correlated with the radioresistance of esophageal cancer cell lines and clinical specimens. High CD59 expression indicated poor overall survival (OS) and disease-free survival (DFS) in esophageal squamous cell carcinoma (ESCC) patients who received radiotherapy. Genetic alteration of CD59 expression modulated the radiosensitivity of esophageal cancer cells to ionizing radiation. CD59 deficiency exacerbated DNA damage, hindered cell proliferation, and induced G2/M cell cycle arrest and cellular senescence, leading to an impaired DNA damage repair ability. In addition, CD59 deficiency almost completely reduced the phosphorylation of Src at Y416 despite ionizing radiation. A Src inhibitor saracatinib sensitized esophageal cancer cells to irradiation. Therefore, CD59 may be a potential biomarker for predicting the radioresistance of ESCC to radiotherapy.


Assuntos
Antígenos CD59/genética , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/radioterapia , Tolerância a Radiação/genética , Animais , Benzodioxóis/farmacologia , Biomarcadores Tumorais/genética , Antígenos CD59/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/genética , Senescência Celular/genética , Dano ao DNA/genética , Reparo do DNA/genética , Intervalo Livre de Doença , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Quinazolinas/farmacologia , Transplante Heterólogo
18.
Cell Res ; 28(5): 572-592, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29467382

RESUMO

Few p53 regulators participate in selective control of p53-mediated cellular metabolism. How p53-mediated aerobic and glycolytic pathways are negatively regulated remains largely unclear. Here, we identified two KRAB-type zinc-finger proteins, PITA (p53 inhibitor of TIGAR activation) and PISA (p53 inhibitor of SCO2 activation), as selective regulators of p53 in metabolic control. PITA and PISA interact with p53 and specifically suppress transcription of the glycolysis regulator TIGAR and the oxidation phosphorylation regulator SCO2, respectively. Importantly, PITA transgenic mice exhibited increased 6-phosphofructokinase 1 (PFK1) activity and an elevated glycolytic rate, whereas PISA transgenic mice had decreased cytochrome c oxidase activity and reduced mitochondrial respiration. In response to glucose starvation, PITA dissociates from p53, resulting in activation of p53 and induction of TIGAR, which inhibited aerobic glycolysis. Prolonged starvation leads to PISA dissociation from p53 and induction of SCO2 and p53-promoted mitochondrial respiration. The dynamic regulation of PITA and PISA upon metabolic stress is dependent on ATM kinase-mediated phosphorylation of PITA and PISA. Furthermore, in human colorectal cancers, the elevated expression of PITA and PISA correlates with cancer progression. Depletion of PITA or PISA in colorectal cancer cells reduced the cell proliferation, migration and invasion. These results identify PITA and PISA as selective regulators of p53-mediated glycolysis and mitochondrial respiration and provide novel insights into the role of p53 network in cell metabolic control.


Assuntos
Glicólise , Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Dedos de Zinco , Aerobiose , Animais , Proteínas Reguladoras de Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Respiração Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Glucose/deficiência , Células HCT116 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Chaperonas Moleculares , Monoéster Fosfórico Hidrolases , Fosforilação , Ligação Proteica
19.
Stem Cell Reports ; 8(1): 140-151, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28017655

RESUMO

Cancer stem cells (CSCs) are highly associated with therapy resistance and metastasis. Interplay between CSCs and various immune components is required for tumor survival. However, the response of CSCs to complement surveillance remains unknown. Herein, using stem-like sphere-forming cells prepared from a mammary tumor and a lung adenocarcinoma cell line, we found that CD59 was upregulated to protect CSCs from complement-dependent cytotoxicity. CD59 silencing significantly enhanced complement destruction and completely suppressed tumorigenesis in CSC-xenografted nude mice. Furthermore, we identified that SOX2 upregulates CD59 in epithelial CSCs. In addition, we revealed that SOX2 regulates the transcription of mCd59b, leading to selective mCD59b abundance in murine testis spermatogonial stem cells. Therefore, we demonstrated that CD59 regulation by SOX2 is required for stem cell evasion of complement surveillance. This finding highlights the importance of complement surveillance in eliminating CSCs and may suggest CD59 as a potential target for cancer therapy.


Assuntos
Antígenos CD59/genética , Carcinoma/etiologia , Carcinoma/metabolismo , Proteínas do Sistema Complemento/imunologia , Vigilância Imunológica , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antígenos CD59/metabolismo , Carcinogênese , Carcinoma/patologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Citotoxicidade Imunológica , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Camundongos , Células-Tronco Neoplásicas/imunologia , Transcrição Gênica , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Rep ; 6: 34643, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698377

RESUMO

Ankylosing spondylitis (AS) is a chronic axial spondyloarthritis (SpA) resulting in back pain and progressive spinal ankyloses. Currently, there are no effective therapeutics targeting AS largely due to elusive pathogenesis mechanisms, even as potential candidates such as HLA-B27 autoantigen have been identified. Herein, we employed a proteoglycan (PG)-induced AS mouse model together with clinical specimens, and found that the complement system was substantially activated in the spinal bone marrow, accompanied by a remarkable proportion alteration of neutrophils and macrophage in bone marrow and spleen, and by the significant increase of TGF-ß1 in serum. The combined treatment with a bacteria-derived complement inhibitor Efb-C (C-terminal of extracellular fibrinogen-binding protein of Staphylococcus aureus) remarkably retarded the progression of mouse AS by reducing osteoblast differentiation. Furthermore, we demonstrated that two important modulators involved in AS disease, TGF-ß1 and RANKL, were elevated upon in vitro complement attack in osteoblast and/or osteoclast cells. These findings further unravel that complement activation is closely related with the pathogenesis of AS, and suggest that complement inhibition may hold great potential for AS therapy.


Assuntos
Anti-Inflamatórios/farmacologia , Dor nas Costas/tratamento farmacológico , Proteínas de Bactérias/farmacologia , Proteínas do Sistema Complemento/genética , Espondilite Anquilosante/tratamento farmacológico , Animais , Dor nas Costas/induzido quimicamente , Dor nas Costas/imunologia , Dor nas Costas/patologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/imunologia , Osteoblastos/patologia , Cultura Primária de Células , Proteoglicanas/administração & dosagem , Ligante RANK/genética , Ligante RANK/imunologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Espondilite Anquilosante/induzido quimicamente , Espondilite Anquilosante/imunologia , Espondilite Anquilosante/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA