Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 10(10): 1498-1503, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620240

RESUMO

General control nonderepressible 2 (GCN2) is a master regulator kinase of amino acid homeostasis and important for cancer survival in the tumor microenvironment under amino acid depletion. We initiated studies aiming at the discovery of novel GCN2 inhibitors as first-in-class antitumor agents and conducted modification of the substructure of sulfonamide derivatives with expected type I half binding on GCN2. Our synthetic strategy mainly corresponding to the αC-helix allosteric pocket of GCN2 led to significant enhancement in potency and a good pharmacokinetic profile in mice. In addition, compound 6d, which showed slow dissociation in binding on GCN2, demonstrated antiproliferative activity in combination with the asparagine-depleting agent asparaginase in an acute lymphoblastic leukemia (ALL) cell line, and it also displayed suppression of GCN2 pathway activation with asparaginase treatment in the ALL cell line and mouse xenograft model.

2.
Nucleic Acids Res ; 42(18): 11601-11, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25217590

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor expressed in metazoan cells that is responsible for eliciting the production of type I interferons and pro-inflammatory cytokines upon detection of intracellular, non-self RNA. Structural studies of RIG-I have identified a novel Pincer domain composed of two alpha helices that physically tethers the C-terminal domain to the SF2 helicase core. We find that the Pincer plays an important role in mediating the enzymatic and signaling activities of RIG-I. We identify a series of mutations that additively decouple the Pincer motif from the ATPase core and show that this decoupling results in impaired signaling. Through enzymological and biophysical analysis, we further show that the Pincer domain controls coupled enzymatic activity of the protein through allosteric control of the ATPase core. Further, we show that select regions of the HEL1 domain have evolved to potentiate interactions with the Pincer domain, resulting in an adapted ATPase cleft that is now responsive to adjacent domains that selectively bind viral RNA.


Assuntos
Adenosina Trifosfatases/química , RNA Helicases DEAD-box/química , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Biocatálise , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Interferon beta/farmacologia , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , Receptores Imunológicos
3.
EMBO Rep ; 14(9): 772-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23897087

RESUMO

Retinoic acid-inducible gene-I (RIG-I) is an intracellular RNA sensor that activates the innate immune machinery in response to infection by RNA viruses. Here, we report the crystal structure of distinct conformations of a RIG-I:dsRNA complex, which shows that HEL2i-mediated scanning allows RIG-I to sense the length of RNA targets. To understand the implications of HEL2i scanning for catalytic activity and signalling by RIG-I, we examined its ATPase activity when stimulated by duplex RNAs of varying lengths and 5' composition. We identified a minimal RNA duplex that binds one RIG-I molecule, stimulates robust ATPase activity, and elicits a RIG-I-mediated interferon response in cells. Our results reveal that the minimal functional unit of the RIG-I:RNA complex is a monomer that binds at the terminus of a duplex RNA substrate. This behaviour is markedly different from the RIG-I paralog melanoma differentiation-associated gene 5 (MDA5), which forms cooperative filaments.


Assuntos
Simulação de Acoplamento Molecular , RNA Helicases/química , RNA/metabolismo , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Células HEK293 , Humanos , Dados de Sequência Molecular , Ligação Proteica , RNA Helicases/metabolismo
4.
Cell ; 147(2): 409-22, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22000018

RESUMO

Intracellular RIG-I-like receptors (RLRs, including RIG-I, MDA-5, and LGP2) recognize viral RNAs as pathogen-associated molecular patterns (PAMPs) and initiate an antiviral immune response. To understand the molecular basis of this process, we determined the crystal structure of RIG-I in complex with double-stranded RNA (dsRNA). The dsRNA is sheathed within a network of protein domains that include a conserved "helicase" domain (regions HEL1 and HEL2), a specialized insertion domain (HEL2i), and a C-terminal regulatory domain (CTD). A V-shaped pincer connects HEL2 and the CTD by gripping an α-helical shaft that extends from HEL1. In this way, the pincer coordinates functions of all the domains and couples RNA binding with ATP hydrolysis. RIG-I falls within the Dicer-RIG-I clade of the superfamily 2 helicases, and this structure reveals complex interplay between motor domains, accessory mechanical domains, and RNA that has implications for understanding the nanomechanical function of this protein family and other ATPases more broadly.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , RNA de Cadeia Dupla/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cristalografia por Raios X , Proteína DEAD-box 58 , Humanos , Hidrólise , Modelos Moleculares , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/metabolismo , Receptores Imunológicos , Alinhamento de Sequência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA