Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Obstet Gynaecol ; 44(1): 2330697, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38520272

RESUMO

BACKGROUND: To determine the association of trainees involvement with surgical outcomes of abdominal and laparoscopic myomectomy including operative time, rate of transfusion, and complications. METHODS: A retrospective cohort study of 1145 patients who underwent an abdominal or laparoscopic myomectomy from 2008-2012 using the American College of Surgeons National Surgical Quality Improvement Program database (Canadian Task Force Classification II-2). RESULTS: Overall, 64% of myomectomies involved trainees. Trainees involvement was associated with a longer operative time for abdominal myomectomies (mean difference 20.17 minutes, 95% Confidence Interval (CI) [11.37,28.97], p < 0.01) overall and when stratified by fibroid burden. For laparoscopic myomectomy, there was no difference in operative time between trainees vs no trainees involvement (mean difference 4.64 minutes, 95% CI [-18.07,27.35], p = 0.67). There was a higher rate of transfusion with trainees involvement for abdominal myomectomies (10% vs 2%, p < 0.01; Odds Ratio (OR) 5.62, 95% CI [2.53,12.51], p < 0.01). Trainees involvement was not found to be associated with rate of transfusion for laparoscopic myomectomy (4% vs 5%, p = 0.86; OR 0.82, 95% CI [0.16,4.14], p = 0.81). For abdominal myomectomy, there was a higher rate of overall complications (15% vs 5%, p < 0.01; OR 2.96, 95% CI [1.77,4.93], p < 0.01) and minor complications (14% vs 4%, p < 0.01; OR 3.71, 95% CI [2.09,6.57], p < 0.01) with no difference in major complications (3% vs 2%, p = 0.23). For laparoscopic myomectomy, there was no difference in overall (6% vs 10% p = 0.41; OR 0.59, 95% CI [0.18,2.01], p = 0.40), major (2% vs 0%, p = 0.38), or minor (5% vs 10%, p = 0.32; OR 0.52, 95% CI [0.15,1.79], p = 0.30) complications. CONCLUSION: Trainees involvement was associated with increased operative time, rate of transfusion, and complications for abdominal myomectomy, however, did not impact surgical outcomes for laparoscopic myomectomy.


TITLE: Trainees Involvement in MyomectomyThe goal of our study was to determine the association of trainees involvement with surgical outcomes of fibroid excision surgery or myomectomy. We conducted a study of abdominal and laparoscopic myomectomies using an international surgical database. We found that trainees involvement in myomectomy was associated with increased operative time, rate of transfusion, and complications for abdominal myomectomy. However, trainees involvement did not impact surgical outcomes for laparoscopic myomectomy.


Assuntos
Laparoscopia , Miomectomia Uterina , Neoplasias Uterinas , Feminino , Humanos , Miomectomia Uterina/efeitos adversos , Neoplasias Uterinas/cirurgia , Estudos Retrospectivos , Laparoscopia/efeitos adversos , Resultado do Tratamento
2.
CNS Neurosci Ther ; 29(12): 3995-4017, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37475184

RESUMO

BACKGROUND: Many studies have recently highlighted the role of photobiomodulation (PBM) in neuropathic pain (NP) relief after spinal cord injury (SCI), suggesting that it may be an effective way to relieve NP after SCI. However, the underlying mechanisms remain unclear. This study aimed to determine the potential mechanisms of PBM in NP relief after SCI. METHODS: We performed systematic observations and investigated the mechanism of PBM intervention in NP in rats after SCI. Using transcriptome sequencing, we screened CXCL10 as a possible target molecule for PBM intervention and validated the results in rat tissues using reverse transcription-polymerase chain reaction and western blotting. Using immunofluorescence co-labeling, astrocytes and microglia were identified as the cells responsible for CXCL10 expression. The involvement of the NF-κB pathway in CXCL10 expression was verified using inhibitor pyrrolidine dithiocarbamate (PDTC) and agonist phorbol-12-myristate-13-acetate (PMA), which were further validated by an in vivo injection experiment. RESULTS: Here, we demonstrated that PBM therapy led to an improvement in NP relative behaviors post-SCI, inhibited the activation of microglia and astrocytes, and decreased the expression level of CXCL10 in glial cells, which was accompanied by mediation of the NF-κB signaling pathway. Photobiomodulation inhibit the activation of the NF-κB pathway and reduce downstream CXCL10 expression. The NF-κB pathway inhibitor PDTC had the same effect as PBM on improving pain in animals with SCI, and the NF-κB pathway promoter PMA could reverse the beneficial effect of PBM. CONCLUSIONS: Our results provide new insights into the mechanisms by which PBM alleviates NP after SCI. We demonstrated that PBM significantly inhibited the activation of microglia and astrocytes and decreased the expression level of CXCL10. These effects appear to be related to the NF-κB signaling pathway. Taken together, our study provides evidence that PBM could be a potentially effective therapy for NP after SCI, CXCL10 and NF-kB signaling pathways might be critical factors in pain relief mediated by PBM after SCI.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Animais , Ratos , Neuralgia/etiologia , Neuralgia/radioterapia , NF-kappa B/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Tiocarbamatos/metabolismo
3.
Cell Mol Biol Lett ; 28(1): 5, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658478

RESUMO

BACKGROUND: Secondary spinal cord injury (SCI) often causes the aggravation of inflammatory reaction and nerve injury, which affects the recovery of motor function. Bone-marrow-derived macrophages (BMDMs) were recruited to the injured area after SCI, and the M1 polarization is the key process for inducing inflammatory response and neuronal apoptosis. We previously showed that photobiomodulation (PBM) can inhibit the polarization of M1 phenotype of BMDMs and reduce inflammation, but the underlying mechanisms are unclear. The purpose of this study is to explore the potential target and mechanism of PBM in treating SCI. METHODS: Transcriptome sequencing and bioinformatics analysis showed that long noncoding RNA taurine upregulated gene 1 (lncRNA TUG1) was a potential target of PBM. The expression and specific mechanism of lncRNA TUG1 were detected by qPCR, immunofluorescence, flow cytometry, western blotting, fluorescence in situ hybridization, and luciferase assay. The Basso mouse scale (BMS) and gait analysis were used to evaluate the recovery of motor function in mice. RESULTS: Results showed that lncRNA TUG1 may be a potential target of PBM, regulating the polarization of BMDMs, inflammatory response, and the axial growth of DRG. Mechanistically, TUG1 competed with TLR3 for binding to miR-1192 and attenuated the inhibitory effect of miR-1192 on TLR3. This effect protected TLR3 from degradation, enabling the high expression of TLR3, which promoted the activation of downstream NF-κB signal and the release of inflammatory cytokines. In vivo, PBM treatment could reduce the expression of TUG1, TLR3, and inflammatory cytokines and promoted nerve survival and motor function recovery in SCI mice. CONCLUSIONS: Our study clarified that the lncRNA TUG1/miR-1192/TLR3 axis is an important pathway for PBM to inhibit M1 macrophage polarization and inflammation, which provides theoretical support for its clinical application in patients with SCI.


Assuntos
MicroRNAs , RNA Longo não Codificante , Traumatismos da Medula Espinal , Receptor 3 Toll-Like , Animais , Camundongos , Citocinas/genética , Hibridização in Situ Fluorescente , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Traumatismos da Medula Espinal/genética , Receptor 3 Toll-Like/genética
4.
Lasers Med Sci ; 37(9): 3433-3442, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35816215

RESUMO

The study aimed to design a reliable and straightforward PBM method by implanting a medical scattering fiber above surgically exposed spinal cord in SCI patients. Moreover, the safety of this method was examined. Twelve patients with acute SCI (ASIA B) requiring posterior decompression were recruited. The medical scattering fiber was implanted above the spinal cord, and was continuously irradiated at 810 nm, 300 mW, 30 min/day, once per day for 7 days. The vital signs (temperature, blood pressure, respiratory rate, heart rate, and oxygen saturation), infection indicators (WBC, NEUT, hs-CRP, and PCT), photo-allergic reaction indicators (Eosinophil and Basophil), coagulation function indicators (PT, APTT, TT) and neurological stability indicators (ASIA sensory and motor scores) were recorded to evaluate the safety of PBM. Three months after surgery, 12 patients completed follow-up. In our study, direct PBM on SCI site did not cause clinically pathologic changes in vital signs of the patients. All patients had higher WBC, NEUT, and hs-CRP at day 3 during irradiation than those before surgery, and returned to normal at day 7. The changes in Eosinophil and Basophil that were closely associated with allergic reactions were within normal limits throughout the course of irradiation. The coagulation function (PT, APTT, and TT) of patients were also in the normal range. The ASIA sensory and motor scores of all patients had no changes throughout the irradiation process. However, in the follow-up, both ASIA sensory and motor scores of all patients had minor improvement than those in pre-irradiation, and 7 patients had adverse events, but they were not considered to be related to PBM. Our study might firstly employ direct PBM in the SCI by using scattered optical fibers. In a limited sample size, our study concluded that direct PBM at the site of SCI would not produce adverse effects within the appropriate irradiation parameters. The method is safe, feasible, and does not add additional trauma to the patient. Our preliminary study might provide a new methodology for the clinical PBM treatment of acute SCI.


Assuntos
Proteína C-Reativa , Terapia com Luz de Baixa Intensidade , Traumatismos da Medula Espinal , Humanos , Recuperação de Função Fisiológica , Medula Espinal/patologia , Traumatismos da Medula Espinal/radioterapia , Traumatismos da Medula Espinal/patologia
5.
Mol Med ; 28(1): 60, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659521

RESUMO

BACKGROUND: African Americans (AAs) are disproportionately affected by cardiovascular disease (CVD), they are 20% more likely to die from CVD than whites, chronic exposure to inflammation and oxidative stress contributes to CVD. In previous studies, enhancing parasympathetic cholinergic activity has been shown to decrease inflammation. Considering that AAs have decreased parasympathetic activity compared to whites, we hypothesize that stimulating it with a central acetylcholinesterase (AChE) inhibitor, galantamine, would prevent lipid-induced oxidative stress. OBJECTIVE: To test the hypothesis that acute dose of galantamine, an AChE inhibitor, decreases lipid-induced oxidative stress in obese AAs. METHODS: Proof-of-concept, double-blind, randomized, placebo-controlled, crossover study that tested the effect of a single dose of 16 mg of galantamine versus placebo on lipid-induced oxidative stress in obese AAs. Subjects were studied on two separate days, one week apart. In each study day, 16 mg or matching placebo was administered before 20% intralipids infusion at doses of 0.8 mL/m2/min with heparin at doses of 200 U/h for 4 h. Outcomes were assessed at baseline, 2 and 4 h during the infusion. MAIN OUTCOME MEASURES: Changes in F2-isoprostane (F2-IsoPs), marker of oxidative stress, measured in peripheral blood mononuclear cells (PBMC) and in plasma at baseline, 2, and 4-h post-lipid infusion. Secondary outcomes include changes in inflammatory cytokines (IL-6, TNF alpha). RESULTS: A total of 32 obese AA women were screened and fourteen completed the study (age 37.8 ± 10.70 years old, BMI 38.7 ± 3.40 kg/m2). Compared to placebo, 16 mg of galantamine significantly inhibited the increase in F2-IsoPs in PBMC (0.007 ± 0.008 vs. - 0.002 ± 0.006 ng/sample, P = 0.016), and plasma (0.01 ± 0.02 vs. - 0.003 ± 0.01 ng/mL, P = 0.023). Galantamine also decreased IL-6 (11.4 ± 18.45 vs. 7.7 ± 15.10 pg/mL, P = 0.021) and TNFα levels (18.6 ± 16.33 vs. 12.9 ± 6.16 pg/mL, P = 0.021, 4-h post lipid infusion) compared with placebo. These changes were associated with an increased plasma acetylcholine levels induced by galantamine (50.5 ± 10.49 vs. 43.6 ± 13.38 during placebo pg/uL, P = 0.025). CONCLUSIONS: In this pilot, proof-of-concept study, enhancing parasympathetic nervous system (PNS) cholinergic activity with galantamine inhibited lipid-induced oxidative stress and inflammation induced by lipid infusion in obese AAs. TRIAL REGISTRATION: ClinicalTrials.gov identifiers NCT02365285.


Assuntos
Doenças Cardiovasculares , Galantamina , Acetilcolinesterase , Adulto , Negro ou Afro-Americano , Colinérgicos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Galantamina/farmacologia , Galantamina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Interleucina-6 , Leucócitos Mononucleares , Lipídeos , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Estresse Oxidativo
6.
Gynecol Endocrinol ; 38(5): 432-437, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35442132

RESUMO

OBJECTIVE: This study aimed to evaluate risk factors for endometrial intraepithelial neoplasia/malignancy in premenopausal women with abnormal uterine bleeding or oligomenorrhea. Specifically, we aimed to elucidate whether body mass index (BMI) or age confers a higher risk. STUDY DESIGN: A retrospective cohort study was performed at a large academic center examining risk factors for endometrial hyperplasia/malignancy in premenopausal women undergoing endometrial sampling. RESULTS: Of the 4170 women ages 18-51 who underwent endometrial sampling from 1987 to 2019, 77 (1.85%) were found to have endometrial intraepithelial neoplasia or malignancy. Clinical predictors of EIN/malignancy in this population included obesity (OR: 3.84, 95%, p < .001), Body mass index [(OR30 vs. 25:2.11, p < .001) and OR35 vs. 30: 1.65, p < .001], Diabetes (OR: 3.6, p-value <.001), hormonal therapy use (OR: 2.93, p < .001), personal history of colon cancer (OR: 9.90, p = .003), family history of breast cancer (OR: 2.65, p < .001), family history of colon cancer (OR: 3.81, p < .001), and family history of endometrial cancer (OR: 4.92, p = .033). Age was not significantly associated with an increased risk of disease. Adjusting for other factors, a model using BMI to predict the risk of EIN/malignancy was more discriminative than a model based on age. CONCLUSIONS: Increased BMI, may be more predictive of endometrial hyperplasia/malignancy than age in premenopausal women with abnormal uterine bleeding. Modification of evaluation guidelines in a contemporary demographic setting could be considered.


Assuntos
Neoplasias do Colo , Hiperplasia Endometrial , Neoplasias do Endométrio , Doenças Uterinas , Neoplasias Uterinas , Adolescente , Adulto , Índice de Massa Corporal , Neoplasias do Colo/complicações , Neoplasias do Colo/patologia , Hiperplasia Endometrial/complicações , Hiperplasia Endometrial/diagnóstico , Neoplasias do Endométrio/complicações , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/epidemiologia , Endométrio/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Doenças Uterinas/patologia , Hemorragia Uterina/epidemiologia , Neoplasias Uterinas/patologia , Adulto Jovem
7.
Front Immunol ; 13: 816952, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371065

RESUMO

Spinal cord injury (SCI) is a catastrophic disease with a complex pathogenesis that includes inflammation, oxidative stress, and glial scar formation. Macrophages are the main mediators of the inflammatory response and are distributed in the epicentre of the SCI. Macrophages have neurotoxic and neuroprotective phenotypes (also known as classically and alternatively activated macrophages or M1 and M2 macrophages) that are associated with pro- or anti- inflammatory gene expression. Our previous study demonstrated that photobiomodulation (PBM) alters the polarization state of macrophages in the SCI region towards the M2 phenotype and promotes the recovery of motor function in rats with SCI. However, the mechanism by which PBM promotes SCI repair remains largely undefined. This study is based on the replacement of conventional percutaneous irradiation with implantable biofibre optic in vivo irradiation. The aim was to further investigate the effects of PBM on SCI in mice under new irradiation patterns and its potential mechanisms of action. PBM was administered to male mice with clamped SCI for four consecutive weeks and significantly promoted the recovery of motor function in mice. Analysis of the macrophage phenotypes in the epicentre of the SCI in mice showed that PBM mainly inhibited the neurotoxic activation of macrophages in the SCI area and reduced the secretion of inflammatory factors such as IL-1α and IL-6; PBM had no effect on M2 macrophages. Immediately afterwards, we constructed in vitro models of the inflammatory polarization of macrophages and PBM intervention. We found that PBM attenuated the neurotoxicity of M1 macrophages on VSC 4.1 motor neurons and dorsal root ganglion (DRG) neurons. The effects of PBM on neurotoxic macrophages and the possible mechanisms of action were analysed using RNA sequencing (RNA-seq), which confirmed that the main role of PBM was to modulate the inflammatory response and immune system processes. Analysis of the differentially expressed genes (DEGs) associated with the inflammatory response showed that PBM had the most significant regulatory effects on genes such as interleukin (IL)-1α, IL-6, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and had obvious inhibitory effects on inflammation-related Notch1 and hypoxia-inducible factor-1α (HIF-1α) pathway genes. RNA-seq analysis of the effect of PBM on gene expression in resting-state macrophages and M2 macrophages did not show significant differences (data not shown). In conclusion, PBM promoted better motor recovery after SCI in mice by inhibiting the neurotoxic polarization of macrophages and the release of inflammatory mediators by acting on the Notch1-HIF-1α/NF-κB Signalling Pathway.


Assuntos
NF-kappa B , Traumatismos da Medula Espinal , Animais , Anti-Inflamatórios/farmacologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Ratos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Traumatismos da Medula Espinal/radioterapia
8.
Lasers Med Sci ; 37(1): 259-267, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33389267

RESUMO

Experts have proven that photobiological regulation therapy for spinal cord injury promotes the spinal repair following injury. The traditional irradiation therapy mode is indirect (percutaneous irradiation), which could significantly lower the effective use of light energy. In earlier studies, we developed an implantable optical fiber that one can embed above the spinal cord lamina, and the light directly is cast onto the surface of the spinal cord in a way that can dramatically improve energy use. Nonetheless, it remains to be seen whether near-infrared light diffused by embedded optical fiber can have side effects on the surrounding nerve cells. Given this, we implanted optical fiber on the lamina of a normal spinal cord to observe the structural integrity of the tissue using morphological staining; we also used immunohistochemistry to detect inflammatory factors. Considering the existing studies, we meant to determine that the light energy diffused by embedded optical fiber has no side effect on the normal tissue. The results of this study will lay a foundation for the clinical application of the treatment of spinal cord injury by near-infrared light irradiation.


Assuntos
Fibras Ópticas , Traumatismos da Medula Espinal , Animais , Neurônios , Medula Espinal , Traumatismos da Medula Espinal/radioterapia , Suínos
9.
J Neuroinflammation ; 18(1): 256, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740378

RESUMO

BACKGROUND: Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI. METHODS: Male Sprague-Dawley rats were randomly divided into three groups: a sham control group, an SCI + vehicle group and an SCI + PBM group. PBM was performed for two consecutive weeks after clip-compression SCI models were established. The activation of neurotoxic microglia and astrocytes, the level of tissue apoptosis, the number of motor neurons and the recovery of motor function were evaluated at different days post-injury (1, 3, 7, 14, and 28 days post-injury, dpi). Lipocalin 2 (Lcn2) and Janus kinase-2 (JAK2)-signal transducer and activator of transcription-3 (STAT3) signaling were regarded as potential targets by which PBM affected neurotoxic microglia and astrocytes. In in vitro experiments, primary microglia and astrocytes were irradiated with PBM and cotreated with cucurbitacin I (a JAK2-STAT3 pathway inhibitor), an adenovirus (shRNA-Lcn2) and recombinant Lcn2 protein. RESULTS: PBM promoted the recovery of motor function, inhibited the activation of neurotoxic microglia and astrocytes, alleviated neuroinflammation and tissue apoptosis, and increased the number of neurons retained after SCI. The upregulation of Lcn2 and the activation of the JAK2-STAT3 pathway after SCI were suppressed by PBM. In vitro experiments also showed that Lcn2 and JAK2-STAT3 were mutually promoted and that PBM interfered with this interaction, inhibiting the activation of microglia and astrocytes. CONCLUSION: Lcn2/JAK2-STAT3 crosstalk is involved in the activation of neurotoxic microglia and astrocytes after SCI, and this process can be suppressed by PBM.


Assuntos
Astrócitos/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Microglia/efeitos da radiação , Recuperação de Função Fisiológica/efeitos da radiação , Traumatismos da Medula Espinal/patologia , Animais , Astrócitos/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/efeitos da radiação , Lipocalina-2/metabolismo , Lipocalina-2/efeitos da radiação , Masculino , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Traumatismos da Medula Espinal/metabolismo , Regulação para Cima
10.
J Mol Neurosci ; 71(6): 1290-1300, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33417168

RESUMO

To study the effect of photobiomodulation (PBM) on axon regeneration and secretion change of dorsal root ganglion (DRG) under oxidative stress after spinal cord injury (SCI), and further explore the effect of changes in DRG secretion caused by PBM on the polarization of macrophages. The PBM-DRG model was constructed to perform PBM on neurons under oxidative stress simulated in vitro. And the irradiation conditions were as follows: wavelength, 810 nm; power density, 2 mW/cm2; irradiation area, 4.5 cm2; and irradiation time, 440 s. Then resulted in an energy of 4 J (2 mW/cm2 × 4.5 cm2 × 440 s). About 100 µM H202 was added to the culture medium to simulate oxidative stress after SCI. An ROS (reactive oxygen species) assay kit was used to measure ROS contend in the DRG. The survival level of the neurons was measured using the CCK-8 method, and the axon regeneration of neurons was observed by using immunofluorescence. The secretion level of CCL2 from DRG was determined by RT-qPCR and ELISA. Further culturing macrophages of DRG-conditioned medium culture, the expression level of iNOS and Arg-1 in macrophages was assessed using Western blot analysis. The expression level of TNF-α and IL-1ß was determined by ELISA. After adding the neutralizing antibody of CCL2 to the DRG neuron-conditioned medium following PBM irradiation to culture macrophages to observe the effects on macrophage polarization and secretion. PBM could reduce ROS levels in neurons, increase neuronal survival under oxidative stress, and promote neuronal axon regeneration. In addition, PBM could also promote CCL2 secretion by DRG under oxidative stress. By constructing a DRG supernatant-M1 macrophage adoptive culture model, we found that the supernatant of DRG after PBM intervention could reduce the expression level of iNOS and the secretion of TNF-α and IL-1ß in M1 macrophages; at the same time, it could also up-regulate the expression of Arg-1, one of the markers of M2 macrophages. Furthermore, these effects could be prevented by the addition of neutralizing antibodies of CCL2. PBM could promote survival and axonal regeneration of DRG under SCI oxidative stress, increase the secretion level of CCL2 by DRG, and this change can reduce the polarization of macrophages to M1, further indicating that PBM could promote spinal cord injury repair.


Assuntos
Axônios/metabolismo , Quimiocina CCL2/metabolismo , Macrófagos/citologia , Estresse Oxidativo , Fototerapia/métodos , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal , Animais , Axônios/efeitos da radiação , Diferenciação Celular , Células Cultivadas , Quimiocina CCL2/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Interleucina-1beta/metabolismo , Luz , Macrófagos/imunologia , Macrófagos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/metabolismo
11.
Lasers Med Sci ; 35(7): 1509-1518, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32065300

RESUMO

In spinal cord injury (SCI), inflammation is a major mediator of damage and loss of function and is regulated primarily by the bone marrow-derived macrophages (BMDMs). Photobiomodulation (PBM) or low-level light stimulation is known to have anti-inflammatory effects and has previously been used in the treatment of SCI, although its precise cellular mechanisms remain unclear. In the present study, the effect of PBM at 810 nm on classically activated BMDMs was evaluated to investigate the mechanisms underlying its anti-inflammatory effects. BMDMs were cultured and irradiated (810 nm, 2 mW/cm2) following stimulation with lipopolysaccharide and interferon-γ. CCK-8 assay, 2',7'-dichlorofluorescein diacetate assay, and ELISA and western blot analysis were performed to measure cell viability, reactive oxygen species production, and inflammatory marker production, respectively. PBM irradiation of classically activated macrophages significantly increased the cell viability and inhibited reactive oxygen species generation. PBM suppressed the expression of a marker of classically activated macrophages, inducible nitric oxide synthase; decreased the mRNA expression and secretion of pro-inflammatory cytokines, tumor necrosis factor alpha, and interleukin-1 beta; and increased the secretion of monocyte chemotactic protein 1. Exposure to PBM likewise significantly reduced the expression and phosphorylation of NF-κB p65 in classically activated BMDMs. Taken together, these results suggest that PBM can successfully modulate inflammation and polarization in classically activated BMDMs. The present study provides a theoretical basis to support wider clinical application of PBM in the treatment of SCI.


Assuntos
Polaridade Celular , Inflamação/radioterapia , Macrófagos/patologia , Animais , Polaridade Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Quimiocinas/genética , Quimiocinas/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Ativação de Macrófagos/efeitos da radiação , Macrófagos/efeitos da radiação , Camundongos Endogâmicos BALB C , Fosforilação/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo
12.
J Cell Mol Med ; 24(1): 476-487, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31667932

RESUMO

Macrophages play key roles in the secondary injury stage of spinal cord injury (SCI). M1 macrophages occupy the lesion area and secrete high levels of inflammatory factors that hinder lesion repair, and M2 macrophages can secrete neurotrophic factors and promote axonal regeneration. The regulation of macrophage secretion after SCI is critical for injury repair. Low-level laser therapy (810-nm) (LLLT) can boost functional rehabilitation in rats after SCI; however, the mechanisms remain unclear. To explore this issue, we established an in vitro model of low-level laser irradiation of M1 macrophages, and the effects of LLLT on M1 macrophage polarization and neurotrophic factor secretion and the related mechanisms were investigated. The results showed that LLLT irradiation decreased the expression of M1 macrophage-specific markers, and increased the expression of M2 macrophage-specific markers. Through forward and reverse experiments, we verified that LLLT can promote the secretion of various neurotrophic factors by activating the PKA-CREB pathway in macrophages and finally promote the regeneration of axons. Accordingly, LLLT may be an effective therapeutic approach for SCI with clinical application prospects.


Assuntos
Axônios/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Terapia com Luz de Baixa Intensidade , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa , Animais , Axônios/efeitos dos fármacos , Axônios/efeitos da radiação , Meios de Cultivo Condicionados/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Isoquinolinas/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/genética , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/efeitos da radiação , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfonamidas/farmacologia
13.
J Biophotonics ; 13(4): e201960022, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31670897

RESUMO

Previous studies on spinal cord injury (SCI) have confirmed that percutaneous photobiomodulation (PBM) therapy can ameliorate immunoinflammatory responses at sites of injury, accelerate nerve regeneration, suppress glial scar formation and promote the subsequent recovery of locomotor function. The current study was performed to evaluate a large-animal model employing implanted optical fibers to accurately irradiate targeted spinal segments. The method's feasibility and irradiation parameters that do not cause phototoxic reaction were determined, and the methodology of irradiating the spinal cord with near-infrared light was investigated in detail. A diffusing optical fiber was implanted above the T9 spinal cord of Bama miniature pigs and used to transfer near-infrared light (810 nm) onto the spinal cord surface. After daily irradiation with 200, 300, 500 or 1000 mW for 14 days, both sides of the irradiated area of the spinal cord were assessed for temperature changes. The condition of the spinal cord and the position of optical fiber were investigated by magnetic resonance imaging (MRI), and different parameters indicating temperature increases or phototoxicity were measured on the normal spinal cord surface due to light irradiation (ie, heat shock responses, inflammatory reactions and neuronal apoptosis), and the animals' lower-limb neurological function and gait were assessed during the irradiation process. The implanted device was stable inside the freely moving animals, and light energy could be directly projected onto the spinal cord surface. The screening of different irradiation parameters preliminary showed that direct irradiation onto the spinal cord surface at 200 and 300 mW did not significantly increase the temperature, stress responses, inflammatory reactions and neural apoptosis, whereas irradiation at 500 mW slightly increased these parameters, and irradiation at 1000 mW induced a significant temperature increase, heat shock, inflammation and apoptosis responses. HE staining of spinal cord tissue sections did not reveal any significant structural changes of the tissues compared to the control group, and the neurological function and gait of all irradiated animals were normal. In this study, we established an in-vivo optical fiber implantation method, which might be safe and stable and could be used to directly project light energy onto the spinal cord surface. This study might provide a new perspective for clinical applications of PBM in acute SCI.


Assuntos
Fibras Ópticas , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Estudos de Viabilidade , Recuperação de Função Fisiológica , Medula Espinal , Traumatismos da Medula Espinal/radioterapia , Suínos
14.
Cell Mol Neurobiol ; 40(1): 141-152, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31446561

RESUMO

Spinal cord injury (SCI) stimulates reactive astrogliosis and the infiltration of macrophages, which interact with each other at the injured area. We previously found Photobiomodulation (PBM) significantly decreases the number of M1 macrophages at the injured area of SCI. But the exact nature of the astrocyte response following PBM and relationship with the macrophage have not been explored in detail. In this study, a BALB/c mice model with standardized bilateral spinal cord compression and a macrophage-astrocyte co-culture model were applied to study effects of PBM on astrocytes. Results showed that PBM inhibit the expression of the astrocyte markers glial fibrillary acidic protein (GFAP) and the secretion of chondroitin sulfate proteoglycans (CSPG) in the para-epicenter area, decrease the number of M1 macrophage in vivo. The in vitro experiments indicated M1 macrophages promote the cell viability of astrocytes and the expression of CSPG. However, PBM significantly inhibited the expression of GFAP, decreased activation of astrocyte, and downregulated the expression of CSPG by regulating M1 macrophages. These results demonstrate that PBM may regulate the interaction between macrophages and astrocytes after spinal cord injury, which inhibited the formation of glial scar.


Assuntos
Astrócitos/efeitos da radiação , Polaridade Celular/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Macrófagos/efeitos da radiação , Animais , Astrócitos/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Meios de Cultivo Condicionados/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Atividade Motora/efeitos dos fármacos , Atividade Motora/efeitos da radiação , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Recuperação de Função Fisiológica/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/radioterapia
15.
Pain ; 158(5): 879-890, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28415063

RESUMO

Bone cancer pain has been reported to have unique mechanisms and is resistant to morphine treatment. Recent studies have indicated that neuron-restrictive silencer factor (NRSF) plays a crucial role in modulating the expression of the µ-opioid receptor (MOR) gene. The present study elucidates the regulatory mechanisms of MOR and its ability to affect bone cancer pain. Using a sarcoma-inoculated murine model, pain behaviors that represent continuous or breakthrough pain were evaluated. Expression of NRSF in the dorsal root ganglion (DRG) and spinal dorsal horn was quantified at the transcriptional and translational levels, respectively. Additionally, chromatin immunoprecipitation assays were used to detect NRSF binding to the promoter of MOR. Furthermore, NRSF was genetically knocked out by antisense oligodeoxynucleotide, and the expression of MOR and the effect of morphine were subsequently analyzed. Our results indicated that in a sarcoma murine model, NRSF expression is upregulated in dorsal root ganglion neurons, and the expression of NRSF mRNA is significantly negatively correlated with MOR mRNA expression. Additionally, chromatin immunoprecipitation analysis revealed that NRSF binding to the neuron-restrictive silencer element within the promoter area of the MOR gene is promoted with a hypoacetylation state of histone H3 and H4. Furthermore, genetically knocking down NRSF with antisense oligodeoxynucleotide rescued the expression of MOR and potentiated the systemic morphine analgesia. The present results suggest that in sarcoma-induced bone cancer pain, NRSF-induced downregulation of MOR is involved in the reduction of morphine analgesia. Epigenetically, up-regulation of MOR could substantially improve the effect of system delivery of morphine.


Assuntos
Analgésicos Opioides/uso terapêutico , Dor do Câncer/tratamento farmacológico , Regulação para Baixo/fisiologia , Morfina/uso terapêutico , Receptores Opioides mu/metabolismo , Proteínas Repressoras/metabolismo , Sarcoma/complicações , Analgésicos Opioides/química , Animais , Neoplasias Ósseas/complicações , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Dor do Câncer/etiologia , Dor do Câncer/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Gânglios Espinais/patologia , Histonas/metabolismo , Masculino , Camundongos , Morfina/química , Atividade Motora , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Medição da Dor , RNA Mensageiro/metabolismo , Receptores Opioides mu/genética , Proteínas Repressoras/genética , Sarcoma/diagnóstico por imagem , Sarcoma/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Medula Espinal/patologia , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Life Sci ; 122: 92-9, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25529147

RESUMO

AIMS: To investigate the effect of locally slow-released rapamycin (RAPA) from the bionic peripheral nerve scaffold on rat sciatic nerve regeneration in the early phase of nerve injury. MAIN METHODS: Slow-releasing RAPA-polyhydroxy alcohol (PLGA) microspheres were prepared and tested for microsphere diameter and slow-release effect in vitro after loading onto nerve scaffold. A total of 48 male SD rats were randomly divided into control group and 3 experimental groups as follows: group 1: RAPA-PLGA scaffold; group 2: RAPA scaffold; and group 3: scaffold alone. In the control group, a 15mm sciatic nerve was excised and religated reversely. In the experimental groups, the scaffolds were used to bridge a defect of 15mm sciatic nerve. The outcome of nerve regeneration was evaluated using neurophysiological and neuromuscular morphological techniques. KEY FINDINGS: The RAPA-PLGA microspheres displayed a smooth exterior. The slow-release of RAPA in group 1 lasted for 14days. The sciatic nerve function index (SFI) and electrophysiological and morphological features were examined 12weeks after the surgery in all groups to reveal various degrees of ipsilateral sciatic nerve regeneration. The SFI values at 12weeks showed no significant difference between the RAPA-PLGA scaffold and control groups; morphological observations revealed that the outcomes of nerve regeneration in the above 2 groups were similar and significantly better than those in the RAPA scaffold and scaffold alone groups. SIGNIFICANCE: RAPA-PLGA microsphere-loaded bionic peripheral nerve scaffold gradually released RAPA locally in the early phase of sciatic nerve regeneration, reduced the secondary nerve injury, and evidently promoted the regeneration of peripheral nerve.


Assuntos
Imunossupressores/farmacologia , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiologia , Nervo Isquiático/citologia , Nervo Isquiático/efeitos dos fármacos , Sirolimo/farmacologia , Engenharia Tecidual , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Preparações de Ação Retardada , Ácido Láctico/química , Masculino , Microesferas , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões
17.
Life Sci ; 112(1-2): 22-32, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25050464

RESUMO

AIMS: To investigate the effect of locally slow-released rapamycin (RAPA) from bionic peripheral nerve stent to reduce the incidence of neuropathic pain or mitigate the degree of pain after nerve injury. MAIN METHODS: We constructed a neural tissue engineering scaffold with sustained release of RAPA to repair 20mm defects in rat sciatic nerves. Four presurgical and postsurgical time windows were selected to monitor the changes in the expression of pain-related dorsal root ganglion (DRG) voltage-gated sodium channels 1.3 (Nav1.3), 1.7 (Nav1.7), and 1.8 (Nav1.8) through immunohistochemistry (IHC) and Western Blot, along with the observation of postsurgical pathological pain in rats by pain-related behavior approaches. KEY FINDINGS: Relatively small upregulation of DRG sodium channels was observed in the experimental group (RAPA+poly(lactic-co-glycolic acid) (PLGA)+stent) after surgery, along with low degrees of neuropathic pain and anxiety, which were similar to those in the Autologous nerve graft group. SIGNIFICANCE: Autoimmune inflammatory response plays a leading role in the occurrence of post-traumatic neuropathic pain, and that RAPA significantly inhibits the abnormal upregulation of sodium channels to reduce pain by alleviating inflammatory response.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Imunossupressores/farmacologia , Neuralgia/tratamento farmacológico , Nervo Isquiático/efeitos dos fármacos , Sirolimo/farmacologia , Engenharia Tecidual , Animais , Preparações de Ação Retardada , Stents Farmacológicos , Gânglios Espinais/imunologia , Gânglios Espinais/fisiopatologia , Expressão Gênica , Ácido Láctico/farmacologia , Masculino , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neuralgia/imunologia , Neuralgia/fisiopatologia , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/imunologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiopatologia , Alicerces Teciduais
18.
Regen Med ; 6(4): 437-47, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21749202

RESUMO

AIM: Scaffold with micro-channels has shown great promise in facilitating axonal regeneration after peripheral nerve injury. Significant research has focused on mimicking, in terms of composition and function, the ability of the basement membrane of Schwann cells to both promote and guide axonal regeneration. We aim to investigate the ability of a tissue-engineered scaffold with nanosilver and collagen to adsorb laminin and fibronectin, and the usefulness of this scaffold for repairing and regenerating a 10-mm peripheral nerve gap in rats. METHODS: In this study, nanosilver-embedded collagen scaffolds were prepared and coated with laminin (LN) or LN plus fibronectin (FN). Scanning electron microscopy of the transverse and longitudinal sections of the scaffold revealed axially oriented microtubules ranging from 20 to 80 µm in diameter, and the internal surface of microtubules was found to be evenly coated with LN and FN. Energy dispersive spectrometry also confirmed an even distribution of nanosilver particles within the scaffold. To test its effectiveness in restoring neuronal connection, the scaffold was used in order to bridge 10 mm gaps in the severed sciatic nerve of rats. The rats were divided into an experimental group (receiving scaffold coated with LN and FN), a control group (receiving scaffold coated with LN only) and an autologous graft group. The functional recovery 40 days after surgery was examined by electrophysiology and sciatic nerve functional index (SFI) evaluation. FluoroGold™ (FG) retrograde tracing, toluidine blue staining and transmission electron microscopy were also used to examine the regenerated nerve fibers and to establish their myelination status. RESULTS: The experimental group displayed partially restored nerve function. The recovery was comparable to the effect of autologous nerve graft and was better than that observed in the control group. A better functional recovery correlated with more FG-labeled neurons, higher density of toluidine blue stained nerve fibers and thicker myelin sheath. CONCLUSION: Our results demonstrated that nanosilver-embedded collagen scaffolds with LN and FN coating is effective in aiding axonal regeneration, and recovery is comparable to the effect of an autologous nerve graft.


Assuntos
Colágeno/farmacologia , Fibronectinas/farmacologia , Laminina/farmacologia , Nanopartículas/química , Nervo Isquiático/lesões , Prata/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Materiais Revestidos Biocompatíveis/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Nervo Isquiático/ultraestrutura , Coloração e Rotulagem , Alicerces Teciduais/química , Cloreto de Tolônio/metabolismo
19.
Plast Reconstr Surg ; 121(1): 59-69, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18176206

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) plays an important role in inducing angiogenesis. Mesenchymal stem cells may have the potential for differentiation into several types of cells, including vascular endothelial cells. In this study, the authors explored the feasibility of applying mesenchymal stem cells transduced by the VEGF gene to the treatment of ischemic random skin flaps. METHODS: Mesenchymal stem cells were isolated from Sprague-Dawley rat bone marrow and cultured in vitro. Plasmid pcDNA3.1(-)/VEGF165 containing the VEGF gene was transduced into the mesenchymal stem cells by liposome. The mesenchymal stem cells were stained with chloromethyl-1-1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanineperchlorate before the transplantation. Thirty rats were randomized into three groups. Groups A, B, and C were injected with mesenchymal stem cells transduced with pcDNA3.1(-)/VEGF165 plasmid, mesenchymal stem cells, and medium only, respectively. On the fourth day after injection, random dorsal skin flaps measuring 9 x 2 cm were elevated. The survival, neovascularization, and blood flow recovery of the flaps were detected. RESULTS: VEGF-transduced mesenchymal stem cells expressed VEGF highly in vitro and in vivo. Transplanted mesenchymal stem cells survived and incorporated into the capillary networks in the ischemic rat flaps. The viability measurements showed an increased percentage flap survival in group A (83.1 +/- 2.6 percent) as compared with either group B (66.4 +/- 6.1 percent) or group C (51.5 +/- 7.5 percent) (p < 0.01). The capillary density and the blood perfusion of the flaps in the experimental group were significantly higher than those in the other two groups (p < 0.01). CONCLUSION: VEGF-transduced mesenchymal stem cells can increase ischemic flap neovascularization and augment the surviving areas.


Assuntos
Isquemia/terapia , Transplante de Células-Tronco Mesenquimais , Transplante de Pele/métodos , Retalhos Cirúrgicos/irrigação sanguínea , Sobrevivência de Tecidos , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Diferenciação Celular , Modelos Animais de Doenças , Neovascularização Fisiológica , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA