Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37833943

RESUMO

Bitter gourd (Momordica charantia L.) contains rich bioactive ingredients and secondary metabolites; hence, it has been used as medicine and food product. This study systematically quantified the nutrient contents, the total content of phenolic acids (TPC), flavonoids (TFC), and triterpenoids (TTC) in seven different cultivars of bitter gourd. This study also estimated the organic acid content and antioxidative capacity of different cultivars of bitter gourd. Although the TPC, TFC, TTC, organic acid content, and antioxidative activity differed significantly among different cultivars of bitter gourd, significant correlations were also observed in the obtained data. In the metabolomics analysis, 370 secondary metabolites were identified in seven cultivars of bitter gourd; flavonoids and phenolic acids were significantly more. Differentially accumulated metabolites identified in this study were mainly associated with secondary metabolic pathways, including pathways of flavonoid, flavonol, isoflavonoid, flavone, folate, and phenylpropanoid biosyntheses. A number of metabolites (n = 27) were significantly correlated (positive or negative) with antioxidative capacity (r ≥ 0.7 and p < 0.05). The outcomes suggest that bitter gourd contains a plethora of bioactive compounds; hence, bitter gourd may potentially be applied in developing novel molecules of medicinal importance.


Assuntos
Momordica charantia , Antioxidantes , Extratos Vegetais , Flavonoides , Frutas
2.
Heliyon ; 8(10): e10930, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36262298

RESUMO

Replacing rockwool with more sustainable materials, such as coir, is an effective measure to improve the sustainability of soilless cultivation in the greenhouse. To comprehensively assess the feasibility of coir before using it widely, coir was compared to rockwool as a cucumber cultivation substrate to evaluate its performance on mineral elements in the substrates, drainage, and in the plants. Plant growth, amino acids, and flavor substances of cucumber fruits were also compared between the two substrates. Compared to rockwool, coir significantly increased the LAI and yield of cucumber crops as well as contents of Ca, Mg, S, Cl and Zn in leaves and fruits. Contents of P, K, Ca, Mg, Cl, Zn, and B in the substrate were higher for coir while those of Fe, Cu, and Mn in the drainage lower. Moreover, coir also significantly increased contents of amino acids (His, Leu, Ile, Phe, Lys, Asp, Glu and Pro) and flavor substance (TC, PS, TP, CLL, CuB, and LA) in cucumber fruits. Our results demonstrated the potential of coir as a replacement of rockwool to improve sustainability of soilless cultivation in the greenhouse.

3.
Sci Rep ; 6: 35424, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752105

RESUMO

To investigate the physiological responses of plants to high root-zone temperature (HT, 35 °C) stress mitigated by exogenous glutathione (GSH), cucumber (Cucumis sativus L.) seedlings were exposed to HT with or without GSH treatment for 4 days and following with 4 days of recovery. Plant physiological variables, growth, and gene expression related to antioxidant enzymes and Calvin cycle were quantified. The results showed that HT significantly decreased GSH content, the ratio of reduced to oxidized glutathione (GSH/GSSG), chlorophyll content, photosynthesis and related gene expression, shoot height, stem diameter, as well as dry weight. The exogenous GSH treatment clearly lessened the HT stress by increasing the above variables. Meanwhile, HT significantly increased soluble protein content, proline and malondialdehyde (MDA) content as well as O2•- production rate, the gene expression and activities of antioxidant enzymes. The GSH treatment remarkably improved soluble protein content, proline content, antioxidant enzymes activities, and antioxidant enzymes related gene expression, and reduced the MDA content and O2•- production rate compared to no GSH treatment in the HT condition. Our results suggest that exogenous GSH enhances cucumber seedling tolerance of HT stress by modulating the photosynthesis, antioxidant and osmolytes systems to improve physiological adaptation.


Assuntos
Antioxidantes/metabolismo , Cucumis sativus/fisiologia , Glutationa/metabolismo , Fotossíntese , Raízes de Plantas/fisiologia , Plântula/fisiologia , Temperatura , Adaptação Biológica , Homeostase , Peróxido de Hidrogênio/metabolismo , Oxirredução , Fenótipo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA