Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Shock ; 61(1): 41-48, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878495

RESUMO

ABSTRACT: Background: Sepsis is a life-threatening systemic inflammatory disease that can cause many diseases, including acute kidney injury (AKI). Increasing evidence showed that a variety of circular RNAs were considered to be involved in the development of the disease. In this study, we aimed to elucidate the role and potential mechanism of circUSP42 in sepsis-induced AKI. Methods: HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. The expression levels of circUSP42, microRNA-182-5p (miR-182-5p), and DUSP1 in LPS-treated HK2 cells were measured by quantitative real-time polymerase chain reaction or Western blot. Functional experiments were performed by using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, flow cytometry, oxidative stress assay, and enzyme-linked immunosorbent assay. The potential target binding site between miR-182-5p and CircUSP42 or DUSP1 was verified by dual-luciferase reporter and RNA immunoprecipitation assays. Results: CircUSP42 and DUSP1 were downregulated in serum samples from patients with AKI and LPS-treated HK2 cells, while miR-182-5p was upregulated. Functionally, overexpression of CircUSP42 promoted cell proliferation and inhibited apoptosis, inflammation, and oxidative stress in LPS-triggered HK2 cells. Further mechanism analysis showed that miR-182-5p had potential binding sites with circUSP42 and DUSP1, and circUSP42 regulated LPS-induced cell damage by targeting miR-182-5p. At the same time, miR-182-5p knockdown inhibited LPS-treated HK2 cell damage by regulating DUSP1. In addition, circUSP42 induced DUSP1 expression via sponging miR-182-5p to ameliorate LPS-induced HK2 cell damage. Conclusion : Our results showed that circUSP42 overexpression might attenuate LPS-induced HK2 cell injury by regulating miR-182-5p/DUSP1 axis. This might provide therapeutic strategy for the treatment of sepsis.


Assuntos
Injúria Renal Aguda , MicroRNAs , Sepse , Humanos , Lipopolissacarídeos/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Apoptose/genética , Células Epiteliais , Sepse/genética , MicroRNAs/genética , Fosfatase 1 de Especificidade Dupla/genética
2.
Int J Biol Macromol ; 253(Pt 8): 127538, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37866562

RESUMO

The combination of highly specific targeting ability and potent killing effect has made antibody-drug conjugates (ADCs) a popular area of focus in the development of anti-cancer drugs. However, the large molecular weight of IgG antibodies (∼ 150 kDa) often faces challenges in penetrating capillaries and stroma in tumor tissue. Moreover, when the drug-antibody ratio (DAR) is too low (DAR < 2) or too high (DAR > 6) it decreases the effectiveness of the ADC and further increases the potential for aggregation, overall clearance of the early system payload, and release rate. In this study, an EGFR-based single-chain antibody fragment (husA)-human serum albumin (HSA)-coupled FITC-labeled mesoporous silica nanoparticle (FMSN-DOX-H-husA) was developed. Chinese hamster ovarian cells express the husA, which is a single chain antibody fragment of the EGFR that has been humanized. The small molecular weight of the single chain antibody allows for shorter penetration into solid tumors and the absence of adverse effects of the Fc fragment. The modification of HSA improves the safety of the antibody nanoparticle couples by both improving the biocompatibility of the nanoparticles, prolonging the circulation time of the nanoparticles, and avoiding early release of the payload. Also, the humanization substantially reduces the immunogenicity. More importantly, the ratio of drug antibodies on nanoparticles was experimentally and computationally derived to be 11.8, providing a more accurate guide for clinical trials. The results of both in vivo and in vitro experiments indicated promising antitumor activity and safety of FMSN-DOX-H-husA. Thus, this antibody-drug conjugate provided a hopeful option for cancer treatment.


Assuntos
Imunoconjugados , Nanopartículas , Neoplasias , Cricetinae , Animais , Humanos , Fragmentos de Imunoglobulinas , Dióxido de Silício , Neoplasias/patologia , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Imunoglobulina G , Receptores ErbB , Linhagem Celular Tumoral
3.
Nanotoxicology ; 17(5): 449-470, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37688453

RESUMO

Lead halide perovskites (LHPs) are outstanding candidates for next-generation optoelectronic materials, with considerable prospects of use and commercial value. However, knowledge about their toxicity is scarce, which may limit their commercialization. Here, for the first time, we studied the cardiotoxicity and molecular mechanisms of representative CsPbBr3 nanoparticles in LHPs. After their intranasal administration to Institute of Cancer Research (ICR) mice, using advanced synchrotron radiation, mass spectrometry, and ultrasound imaging, we revealed that CsPbBr3 nanoparticles can severely affect cardiac systolic function by accumulating in the myocardial tissue. RNA sequencing and Western blotting demonstrated that CsPbBr3 nanoparticles induced excessive oxidative stress in cardiomyocytes, thereby provoking endoplasmic reticulum stress, disturbing calcium homeostasis, and ultimately leading to apoptosis. Our findings highlight the cardiotoxic effects of LHPs and provide crucial toxicological data for the product.


Assuntos
Compostos de Cálcio , Nanopartículas , Animais , Camundongos , Compostos de Cálcio/toxicidade , Miocárdio , Óxidos/toxicidade , Nanopartículas/toxicidade
4.
Adv Healthc Mater ; 12(29): e2300819, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37698231

RESUMO

Radiation-induced heart disease is a serious side effect of radiation therapy that can lead to severe consequences. However, effective and safe methods for their prevention and treatment are presently lacking. This study reports the crucial function of fullerenols in protecting cardiomyocytes from radiation injury. First, fullerenols are synthesized using a simple base-catalyzed method. Next, the as-prepared fullerenols are applied as an effective free radical scavenger and broad-spectrum antioxidant to protect against X-ray-induced cardiomyocyte injury. Their ability to reduce apoptosis via the mitochondrial signaling pathway at the cellular level is then verified. Finally, it is observed in animal models that fullerenols accumulate in the heart and alleviate myocardial damage induced by X-rays. This study represents a timely and essential analysis of the prevention and treatment of radiological myocardial injury, providing new insights into the applications of fullerenols for therapeutic strategies.


Assuntos
Fulerenos , Lesões por Radiação , Animais , Fulerenos/farmacologia , Fulerenos/uso terapêutico , Antioxidantes , Sequestradores de Radicais Livres , Miócitos Cardíacos
5.
Micromachines (Basel) ; 14(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37241534

RESUMO

In this work, a N/P polySi thermopile-based gas flow device is presented, in which a microheater distributed in a comb-shaped structure is embedded around hot junctions of thermocouples. The unique design of the thermopile and the microheater effectively enhances performance of the gas flow sensor leading to a high sensitivity (around 6.6 µV/(sccm)/mW, without amplification), fast response (around 35 ms), high accuracy (around 0.95%), and mood long-term stability. In addition, the sensor has the advantages of easy production and compact size. With such characteristics, the sensor is further used in real-time respiration monitoring. It allows detailed and convenient collection of respiration rhythm waveform with sufficient resolution. Information such as respiration periods and amplitudes can be further extracted to predict and alert of potential apnea and other abnormal status. It is expected that such a novel sensor could provide a new approach for respiration monitoring related noninvasive healthcare systems in the future.

6.
ACS Omega ; 8(14): 12752-12760, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065049

RESUMO

Antibody-drug conjugates (ADC) are an inevitable trend in the development of modern "precision medicine". The goal of this work is to produce enzyme-responsive antibody nanoparticle-loaded medication (FMSN-Dox-H2-AE01) based on the EGFR antibody (AE01) and human serum albumin (HSA) shelled mesoporous silica nanoparticles. HSA and antibodies on the surface of the particlescan not only enhance the biocompatibility of the particle and avoid early drug leakage but also allow selective biodegradation triggered by matrix metalloproteinase-2 (MMP-2), which are overexpressed enzymes in some tumor tissues. The cytotoxicity test confirmed favorable safety and efficacy of the ADC. The mortality rate of cancer cells is about 85-90%. Moreover, the antibody nanoparticle-loaded drug showed distinguishing controlled release efficiency toward cancer cells induced by different levels of MMP-2 and pH. This enzyme-responsive FMSN-Dox-H2-AE01 offers a promising option for cancer therapy.

7.
ACS Appl Mater Interfaces ; 15(16): 19833-19846, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37052616

RESUMO

Radiation gastroenteritis represents one of the most prevalent and hazardous complications of abdominopelvic radiotherapy, which not only severely reduces patients' life quality but also restricts radiotherapy efficacy. However, there is currently no clinically available oral radioprotector for this threatening disease due to its complex pathogenesis and the harsh gastrointestinal environment. To this end, this study developed a facile but effective oral radioprotector, ergothioneine hyaluronate (EGT@HA) gel, protecting against radiation gastroenteritis by synergistically regulating oxidative stress, inflammation, and gut microbiota. In vitro and cellular experiments verified the chemical stability and free radical scavenging ability of EGT and its favorable cellular radioprotective efficacy by inhibiting intracellular reactive oxidative species (ROS) generation, DNA damage, mitochondrial damage, and apoptosis. At the in vivo level, EGT@HA with prolonged gastrointestinal residence mitigated radiation-induced gastrointestinal tissue injury, apoptosis, neutrophil infiltration, and gut flora dysbiosis. For the first time, this work investigated the protective effects of EGT@HA gel on radiation gastroenteritis, which not only hastens the advancement of the novel gastrointestinal radioprotector but also provides a valuable gastrointestinal radioprotection paradigm by synergistically modulating oxidative stress, inflammation, and gut microbiota disturbance.


Assuntos
Ergotioneína , Gastroenterite , Microbioma Gastrointestinal , Lesões por Radiação , Humanos , Ergotioneína/genética , Ergotioneína/farmacologia , Antioxidantes/farmacologia , Disbiose/tratamento farmacológico , Disbiose/prevenção & controle , Apoptose , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
8.
Protein Expr Purif ; 206: 106243, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36754125

RESUMO

The primary objective of this study was to obtain humanized EGFR antibody and to study it in vitro binding and endocytosis to A431 epidermoid carcinoma cells overexpressing EGFR. Firstly, humanized anti-EGFR AE01 was stably expressed in CHO system. The expression of AE01 was detected by SDS-PAGE and Western blot. The binding and endocytosis of AE01 were detected by flow cytometry and immunofluorescence assay. The results showed that: (1) Pure humanized AE01 was prepared, (2) AE01 specifically binds to A431 cells on the cell surface (EGFR-positive), but not binds to NIH 3T3 cells (EGFR-negative), (3) AE01 can effectively inhibit the proliferation of A431 cells, and (4) AE01 binds to A431 cell surface triggered internalization. The antibody is expected to be a candidate molecule for EGFR overexpressed cancer cell targeted therapeutic vectors.


Assuntos
Anticorpos , Receptores ErbB , Cricetinae , Animais , Camundongos , Cricetulus , Células CHO , Linhagem Celular Tumoral
9.
Food Chem ; 399: 133933, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037684

RESUMO

A series of incubation systems of (+) - catechin (Cat), ascorbic acid (AA) and polyphenol oxidase (PPO) of lotus rhizome at 40 °C were performed to investigate the effect and oxidation pathway of AA on the stability of Cat. The results showed that after the enzymatic or non-enzymatic oxidation of Cat, the products of the two reactions were the same, namely epicatechin, catechin dimer and dehydrogenated catechin dimer. After adding AA, the protective effect of AA on catechin increased first and then decreased with the increase of AA concentration. 0.1 mmolL(exp)-1 AA can inhibit PPO activity in a short time. Within 24 h, 1 mmolL(exp)-1 AA can keep Cat content at 87.88 %. At the concentration of 10 mmolL(exp)-1 AA, excessive AA is oxidized to form a large amount of dehydroascorbic acid (DHAA), which forms an adduct with Cat, promoting the consumption of Cat. The effect of AA on the stability of Cat is time-dependent and dose-dependent.


Assuntos
Ácido Ascórbico , Catequina , Ácido Ascórbico/metabolismo , Catecol Oxidase/metabolismo , Ácido Desidroascórbico , Oxirredução
10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(3): 284-288, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35574747

RESUMO

OBJECTIVE: To investigate the effect and mechanism of bone marrow mesenchymal stem cell (BMSC) on pyroptosis of rats with kidney injury. METHODS: Bone marrow of 4-5 week-old female Sprague-Dawley (SD) rats was isolated in vitro and BMSC was obtained. The third generations of BMSC were used to further experiments. Fifteen 6 week-old SD rats were cluster-randomized divided into control group, kidney injury group and BMSC group (5 rats in each group). Rats in kidney injury group were injected with lipopolysaccharide (LPS) 1 mg/kg via tail vein; the control group was given the same amount of normal saline. BMSC group was injected with 0.5 mL BMSC (including 2×106 BMSC) via tail vein after modeling; the kidney injury group received the same amount of normal saline. On day 3 after these injections, serum creatinine (SCr) was detected by picric acid method, and blood urea nitrogen (BUN) was detected by diacetyl monoxime. The levels of cystatin C (Cys C), interleukins (IL-1ß and IL-18) in blood were detected by enzyme-linked immunosorbent assay (ELISA). The rats were then sacrificed and their kidneys were removed for subsequent detection. The mRNA expression levels of NOD-like receptor protein 3 (NLRP3) and cysteinyl aspartate-specific protease-1 (caspase-1) of kidney were detected by quantificational real-time quantitative polymerase chain reaction (qRT-PCR). The protein expression levels of NLRP3 and caspase-1 of kidney were detected by Western blotting. RESULTS: In vitro, after bone marrow cell suspension was cultured for 24 hours, a large number of round adherent cells and suspended cells appeared in each culture flask. After 4-5 days of culture, a large number of long spindle cells adhered to the wall, and there were still obvious impurity cells. After trypsin digestion and passage to the third generation, the long spindle adherent cells grew mainly in the culture flask and were basically purified as BMSC. In vivo, compared with the control group, the levels of SCr, BUN, Cys C, IL-1ß and IL-18 in kidney injury group were increased [SCr (µmol/L): 85.22±2.29 vs. 21.80±0.59, BUN (mmol/L): 11.50±0.64 vs. 5.86±0.83, Cys C (mg/L): 0.13±0.01 vs. 0.11±0.02, IL-1ß (ng/L): 31.49±1.42 vs. 4.74±0.49, IL-18 (ng/L): 29.01±1.95 vs. 1.52±0.03, all P < 0.05]. The mRNA and protein expression levels of NLRP3, caspase-1 were significantly increased [NLRP3 mRNA (2-ΔΔCt): 3.635±0.296 vs. 1.000±0.002, caspase-1 mRNA (2-ΔΔCt): 4.020±0.228 vs. 1.001±0.003; NLRP3 protein (NLRP3/ß-actin): 1.560±0.868 vs. 0.902±0.036, caspase-1 protein (caspase-1/ß-actin): 1.392±0.097 vs. 0.895±0.046, all P < 0.05]. Compared with kidney injury group, the levels of SCr, BUN, IL-1ß and IL-18 in BMSC group were significantly decreased [SCr (µmol/L): 51.64±3.84 vs. 85.22±2.29, BUN (mmol/L): 9.90±0.46 vs. 11.50±0.64, IL-1ß (ng/L): 24.20±1.45 vs. 31.49±1.42, IL-18 (ng/L): 12.97±1.25 vs. 29.01±1.95, all P < 0.05]. The mRNA and protein expression levels of NLRP3, caspase-1 were significantly decreased [NLRP3 mRNA (2-ΔΔCt): 1.488±0.136 vs. 3.635±0.296, caspase-1 mRNA (2-ΔΔCt): 1.643±0.143 vs. 4.020±0.228; NLRP3 protein (NLRP3/ß-actin): 1.227±0.053 vs. 1.560±0.868, caspase-1 protein (caspase-1/ß-actin): 1.159±0.107 vs. 1.392±0.097, all P < 0.05]. CONCLUSIONS: In vivo, BMSC may attenuate pyroptosis in LPS-induced kidney injury rats.


Assuntos
Células-Tronco Mesenquimais , Piroptose , Actinas , Animais , Caspases , Feminino , Interleucina-18/metabolismo , Rim/metabolismo , Lipopolissacarídeos/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Solução Salina
11.
Curr Stem Cell Res Ther ; 17(4): 361-369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392791

RESUMO

BACKGROUND: The transplantation of bone marrow mesenchymal cells (BMSCs) has been shown to be an effective mean for treating sepsis-related organ damage. Pytoptotic cell death, in turn, has recently been identified as a key driver of sepsis-related damage. At present, there are few studies on the effect of BMSC transplantation on pyroptotic cell death. OBJECTIVE: We explored the ability of BMSCs to attenuate hepatic damage in a pyroptosis-related manner in a rat model of lipopolysaccharide (LPS)-induced liver injury. METHODS: Following injury modeling and BMSC transplantation, we assessed the expression of the NLR family, pyrin domain containing 3 (NLRP3) inflammasome, and key downstream pyroptosis-related signaling molecules. RESULTS: It was found that BMSC transplantation was sufficient to significantly improve rat survival after LPS injection. A significantly reduced expression of the pyroptosis-related proteins NLRP3, caspase-1, IL-1ß, and IL-18 in rats that had undergone BMSC transplantation compared to control animals was observed. Notably, this activity was superior to single-agent administration of the NLRP3 inhibitor MCC950. CONCLUSION: Our data suggest that BMSC transplantation may alleviate LPS-induced hepatic damage by suppressing the activation of the NLRP3 inflammasome and the induction of pyroptotic cell death.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias , Células-Tronco Mesenquimais , Sepse , Animais , Hepatócitos , Inflamassomos , Lipopolissacarídeos/toxicidade , Células-Tronco Mesenquimais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Ratos
12.
Ann Transl Med ; 9(16): 1299, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532436

RESUMO

BACKGROUND: The present study sought to investigate the regulatory role of the long non-coding RNA (lncRNA) cardiac hypertrophy-related factor (CHRF) in a mouse model of acute lung injury (ALI) and in primary mouse pulmonary microvascular endothelial cells (MPVECs) treated with lipopolysaccharide (LPS). METHODS: C57BL/6 mice were given adenovirus (Ad) sh-CHRF or negative control (NC) before undergoing cecal ligation and perforation. MPVECs transfected with Adsh-CHRF or NC were treated with LPS. Double luciferase assay was used to detect the binding of miR-146a to CHRF or Notch1. Subsequently, MPVECs were co-transfected with miR-146a inhibitor and sh-CHRF for 24 hours, and then treated with LPS. RESULTS: High expression of CHRF was detected in septic mice. Cecal ligation and perforation induced ALI and apoptosis in mice, whereas, CHRF knockout could inhibit ALI. The protein expression levels of TNF-α, IL-1ß and IL-6 in the lung and bronchoalveolar lavage fluid of the CLP group were up-regulated, whereas the expression of IL-4 and IL-10 was down-regulated. CHRF inhibition reduced the production of proinflammatory cytokines in septic mice. The inhibitory effect of CHRF gene knockdown on lung inflammation and apoptosis was confirmed in the septic cell model. Mechanistic investigation showed that CHRF up-regulated the level of Notch1 by sponging miR-146a. Additionally, the low expression of miR-146a reversed the inhibitory effect of CHRF gene knockout on LPS-induced inflammatory response and apoptosis. Together, in vivo and in vitro results demonstrated that CHRF enhanced sepsis-induced ALI by targeting miR-146a and up-regulating Notch1. CONCLUSIONS: CHRF can induce inflammation and apoptosis caused by sepsis by miR-146a/Notch1 axis. Therefore, it may serve as a potential drug target for treating sepsis-induced ALI.

13.
Sci Rep ; 6: 25780, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27173138

RESUMO

Deficits in the Notch pathway are involved in a number of neurologic diseases associated with mental retardation or/and dementia. The mechanisms by which Notch dysregulation are associated with mental retardation and dementia are poorly understood. We found that Notch1 is highly expressed in the adult-born immature neurons in the hippocampus of mice. Retrovirus mediated knockout of notch1 in single adult-born immature neurons decreases mTOR signaling and compromises their dendrite morphogenesis. In contrast, overexpression of Notch1 intracellular domain (NICD), to constitutively activate Notch signaling in single adult-born immature neurons, promotes mTOR signaling and increases their dendrite arborization. Using a unique genetic approach to conditionally and selectively knockout notch 1 in the postnatally born immature neurons in the hippocampus decreases mTOR signaling, compromises their dendrite morphogenesis, and impairs spatial learning and memory. Conditional overexpression of NICD in the postnatally born immature neurons in the hippocampus increases mTOR signaling and promotes dendrite arborization. These data indicate that Notch signaling plays a critical role in dendrite development of immature neurons in the postnatal brain, and dysregulation of Notch signaling in the postnatally born neurons disrupts their development and thus contributes to the cognitive deficits associated with neurological diseases.


Assuntos
Envelhecimento/metabolismo , Dendritos/metabolismo , Hipocampo/patologia , Transtornos da Memória/patologia , Neurogênese , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Giro Denteado/metabolismo , Integrases/metabolismo , Transtornos da Memória/metabolismo , Camundongos Knockout , Plasticidade Neuronal , Domínios Proteicos , Receptor Notch1/química , Retroviridae/metabolismo , Proteína S6 Ribossômica/metabolismo , Memória Espacial , Serina-Treonina Quinases TOR/metabolismo
14.
Int Heart J ; 57(3): 356-62, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27150003

RESUMO

The clinical goal of cell-based treatment for chronic heart failure is to coordinately reconstitute the cardiomyocytes and associated circulation environment including coronary resistance arteries, arterioles, and capillary profiles.(1)) This goal can be possibly achieved by implementing multipotent adult stem cells. However, it remains a challenge to modify the capillary network in the decompensated heart. A mechanical stress model was used in this study to mimic the hemodynamic and hormonal states of the decompensated heart in vitro. The angiogenesis role of endothelial progenitor cells (EPCs) under stress has been well-recognized in vascular repair. We investigated the molecular mechanisms of EPCs in this model. We found that expression of vascular endothelial growth factor (VEGF) in EPCs was significantly decreased by mechanical stress, and this effect was accompanied by a decrease in angiogenesis in vitro. Interestingly, the defective angiogenesis can be reversed by upregulating the membrane VEGF receptor (VEGFR) endocytosis. An atypical protein kinase C (aPKC) inhibitor can promote the VEGFR internalization in EPCs and enhance the formation of vascular networks. Thus, the upregulation of VEGFR endocytosis in EPCs could be a potential therapy for the cell-based treatment of chronic heart failure by enhancing the cardiomyocytes.


Assuntos
Fenômenos Biomecânicos/fisiologia , Células Progenitoras Endoteliais , Insuficiência Cardíaca , Neovascularização Fisiológica/fisiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sobrevivência Celular , Transplante de Células/métodos , Células Cultivadas , Células Progenitoras Endoteliais/fisiologia , Células Progenitoras Endoteliais/transplante , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Modelos Cardiovasculares , Estresse Fisiológico
15.
Medicine (Baltimore) ; 94(42): e1654, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26496271

RESUMO

The need for reliable biomarkers for distinguishing Crohn disease (CD) from ulcerative colitis (UC) is increasing. This study aimed at evaluating the diagnostic potential of anti-GP2 antibodies as a biomarker in Chinese patients with CD. In addition, a variety of autoantibodies, including anti-saccharomyces cerevisiae antibodies (ASCA), perinuclear anti-neutrophil cytoplasmic antibodies (PANCA), anti-intestinal goblet cell autoantibodies (GAB), and anti-pancreatic autoantibodies (PAB), were evaluated.A total of 91 subjects were prospectively enrolled in this study, including 35 patients with CD, 35 patients with UC, 13 patients with non-IBD gastrointestinal diseases as disease controls (non-IBD DC), and 8 healthy controls (HC). The diagnosis of IBD was determined based on the Lennard-Jones criteria, and the clinical phenotypes of the IBD patients were determined based on the Montreal Classification.Anti-GP2 IgG antibodies were significantly elevated in patients with CD, compared with patients with UC (P = 0.0038), HC (P = 0.0055), and non-IBD DC (P = 0.0063). The prevalence of anti-GP2 IgG, anti-GP2 IgA and anti-GP2 IgA, or IgG antibodies in patients with CD was 40.0%, 37.1%, and 54.3%, respectively, which were higher than those in non-IBD DC (anti-GP2 IgG, 15.4%; anti-GP2 IgA, 7.7%; and anti-GP2 IgA or IgG, 23.1%) and those in patients with UC (anti-GP2 IgG, 11.4%; anti-GP2 IgA, 2.9%; and anti-GP2 IgA or IgG, 14.3%). For distinguishing CD from UC, the sensitivity, specificity, positive predictive value (PPV) and positive likelihood ratios (LR+) were 40%, 88.6%, 77.8%, and 3.51 for anti-GP2 IgG, 37.1%, 97.1%, 92.9%, and 13.0 for anti-GP2 IgA, and 54.3%, 85.3%, 79.2%, and 3.69 for anti-GP2 IgA or IgG. For CD diagnosis, the combination of anti-GP2 antibodies with ASCA IgA increased the sensitivity to 68.6% with moderate loss of specificity to 74.3%. Spearman's rank of order revealed a significantly positive correlation of anti-GP2 IgG with ileocolonic location of disease (L3) (P = 0.043) and a negative correlation of anti-GP2 IgA with biologic therapy (P = 0.012).Our findings suggest that anti-GP2 antibodies could serve as a biomarker for distinguishing patients with CD from patients with UC, and the combination of anti-GP2 antibodies with ASCA IgA may improve the predictive power.


Assuntos
Autoanticorpos/sangue , Doença de Crohn/sangue , Doença de Crohn/diagnóstico , Proteínas Ligadas por GPI/imunologia , Adolescente , Adulto , Idoso , Povo Asiático , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
16.
Int J Clin Exp Pathol ; 8(6): 6596-606, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26261541

RESUMO

OBJECTIVE: It has been reported that Qiliqiangxin (QL), a traditional Chinese medicine compound, could inhibit cardiac hypertrophy and remodeling, and improve cardiac function. However, whether and how it reverses cardiac remodeling in rats post myocardial infarction (MI) remains unknown. This study aims to explore related mechanisms linked with cardiac function improvement and attenuation of cardiac remodeling by QL in rats with experimental MI. METHODS: MI was induced by ligation of left anterior descending coronary artery (LAD) in male Sprague-Dawley rats. Rats with LVEF < 50% at four weeks after procedure were treated for another 6 weeks with placebo, QL and captopril. Echocardiography and plasma NT-proBNP were measured at the end of study, and histological studies were performed. Protein expressions of Neuregulin-1 (NRG-1), total-Akt, phospho-Akt (Ser473), hydroxy-HIF-1α (Pro564), VEGF, Bax, Bcl-2 and Caspase 3 were examined by Western blot. mRNA expression of NRG-1 and p53 was detected by real-time PCR. RESULTS: Compared with the placebo group, QL improved cardiac function, reduced left ventricular dimension, inhibited interstitial inflammation and fibrosis, increased neovascularization, and attenuated cardiomyocyte apoptosis. Meanwhile QL significantly upregulated the expression of HIF-1α, VEGF, enhanced phosphorylation of Akt, decreased the ratio of Bax/Bcl-2 and Caspase 3 expression. Furthermore, we observed upregulation of NRG-1 and downregulation of p53 after QL treatment. CONCLUSION: Our data suggest that the beneficial effects of QL on improving cardiac function and attenuating cardiac remodeling post MI are associated with angiogenesis enhancement and apoptosis inhibition, which may be mediated via activation of NRG-1/Akt signaling and suppression of p53 pathway.


Assuntos
Cardiotônicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Modelos Animais de Doenças , Fibrose , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Peptídeo Natriurético Encefálico/sangue , Neovascularização Fisiológica/efeitos dos fármacos , Neuregulina-1/metabolismo , Fragmentos de Peptídeos/sangue , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
BMC Plant Biol ; 15: 141, 2015 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-26067440

RESUMO

BACKGROUND: Drought is a major abiotic stress factors that reduces agricultural productivity. GRAS transcription factors are plant-specific proteins that play diverse roles in plant development. However, the functions of a number of GRAS genes identified in rice are unknown, especially the GRAS genes related to rice drought resistance have not been characterized. RESULTS: In this study, a novel GRAS transcription factor gene named OsGRAS23, which is located in a drought-resistant QTL interval on chromosome 4 of rice, was isolated. The expression of OsGRAS23 was induced by drought, NaCl, and jasmonic acid treatments. The OsGRAS23-GFP fused protein was localized in the nucleus of tobacco epidermal cells. A trans-activation assay in yeast cells demonstrated that the OsGRAS23 protein possessed a strong transcriptional activation activity. OsGRAS23-overexpressing rice plants showed improved drought resistance and oxidative stress tolerance as well as less H2O2 accumulation compared with the wild-type plants. Furthermore, microarray analysis showed that several anti-oxidation related genes were up-regulated in the OsGRAS23-overexpressing rice plants. The yeast one hybrid test indicated that OsGRAS23 could bind to the promoters of its potential target genes. CONCLUSIONS: Our results demonstrate that OsGRAS23 encodes a stress-responsive GRAS transcription factor and positively modulates rice drought tolerance via the induction of a number of stress-responsive genes.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Adaptação Fisiológica/genética , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica , Estresse Oxidativo/genética , Filogenia , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Técnicas do Sistema de Duplo-Híbrido
18.
J Cell Mol Med ; 19(5): 1114-21, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25752645

RESUMO

Qiliqiangxin (QL), a traditional Chinese medicine, had long been used to treat chronic heart failure. Recent studies revealed that differentiation of cardiac fibroblasts (CFs) into myofibroblasts played an important role in cardiac remodelling and development of heart failure, however, little was known about the underlying mechanism and whether QL treatment being involved. This study aimed to investigate the effects of QL on angiotensin II (AngII)-induced CFs transdifferentiation. Study was performed on in vitro cultured CFs from Sprague-Dawley rats. CFs differentiation was induced by AngII, which was attenuated by QL through reducing transforming growth factor-ß1 (TGF-ß1 ) and α-smooth muscle actin (α-SMA). Our data showed that AngII-induced IL-6 mRNA as well as typeI and typeIII collagens were reduced by QL. IL-6 deficiency could suppress TGF-ß1 and α-SMA, and both IL-6 siRNA and QL-mediated such effect was reversed by foresed expression of recombined IL-6. Increase in actin stress fibres reflected the process of CFs differentiation, we found stress fibres were enhanced after AngII stimulation, which was attenuated by pre-treating CFs with QL or IL-6 siRNA, and re-enhanced after rIL-6 treatment. Importantly, we showed that calcineurin-dependent NFAT3 nuclear translocation was essential to AngII-mediated IL-6 transcription, QL mimicked the effect of FK506, the calcineurin inhibitor, on suppression of IL-6 expression and stress fibres formation. Collectively, our data demonstrated the negative regulation of CFs differentiation by QL through an IL-6 transcriptional mechanism that depends on inhibition of calcineurin/NFAT3 signalling.


Assuntos
Angiotensina II/farmacologia , Transdiferenciação Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Fibroblastos/efeitos dos fármacos , Interleucina-6/antagonistas & inibidores , Miocárdio/citologia , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Calcineurina/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Microscopia de Fluorescência , Fatores de Transcrição NFATC/metabolismo , Interferência de RNA , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
19.
Mol Med ; 20: 590-600, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25333920

RESUMO

We first reported the role of 5-hydroxymethyl-2-furfural (5-HMF) against hypoxia. Here, we studied the mechanism by using oxygen-dependent degradation domain (ODD)-Luc mice, which are a useful model to probe the stabilization of hypoxia-inducible factor 1α (HIF-1α). Compared with three other compounds that have been reported to have a role in stabilizing HIF-1α, 5-HMF caused stronger bioluminescence, which is indicative of HIF-1α stability in the brain and kidney of ODD-Luc mice. We further demonstrated that the HIF-1α protein accumulated in response to 5-HMF in the brains and kidneys of these mice, as well as in PC12 cells. Additionally, 5-HMF promoted the nuclear translocation of HIF-1α and the transcriptional activity of HIF-1, which was evaluated by detecting vascular endothelial growth factor (VEGF ) mRNA expression. These results suggest that 5-HMF stabilized HIF-1α and increased its activity. Considering the role of proline hydroxylases (PHDs) in negatively regulating HIF-1α stability, we explored whether 5-HMF interacts with the substrates and cofactors of PHDs, such as 2-oxoglutarate (2-OG), Fe(2+) and vitamin C (VC), which affects the activity of PHDs. The result revealed that 5-HMF did not interact with Fe(2+) or 2-OG but interacted with VC. This interaction was confirmed by subsequent experiments, in which 5-HMF entered into cells and reduced the VC content. The enhanced stability of HIF-1α by 5-HMF was reversed by VC supplementation, and the improved survival of mice caused by 5-HMF under hypoxia was abrogated by VC supplementation. Thus, we demonstrated for the first time that 5-HMF increases HIF-1α stability by reducing the VC content, which mediates the protection against hypoxia.


Assuntos
Furaldeído/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Substâncias Protetoras/farmacologia , Animais , Ácido Ascórbico/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Furaldeído/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ácidos Cetoglutáricos/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Luciferases de Vaga-Lume/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células PC12 , Estrutura Terciária de Proteína/genética , Ratos
20.
Artigo em Chinês | MEDLINE | ID: mdl-23940944

RESUMO

OBJECTIVE: To investigate the regulation of different hypoxia on cell survival and autophagy. METHODS: PC12 cells were treated with different hypoxia. The cell survival was measured by MTT assay, expressions of LC3 and p62 were marked for autophagy detected by Western Blot, and the level of reactive oxygen species (ROS) was analyzed by flow cytometry. RESULTS: The cell viability was different under different hypoxia: moderate hypoxia promoted cell viability, and severe hypoxia caused a decrease in cell viability; autophagy marker molecules, p62 and LC3-II expressions were different: moderate hypoxia increased p62 and LC3-II expressions, in contrast, severe hypoxia led to the decrease of p62 and LC3-II expressions; compared to normoxia, moderate hypoxia did not change the levels of ROS, while severe hypoxia increased the levels; 3-MA, the inhibitor of autophagy, elevated the levels of ROS in the three oxygen concentrations, additionally, the increased amplitudes in the moderate and severe hypoxia groups were higher than that in the normoxia group. CONCLUSION: Moderate hypoxia promotes cell survival, severe hypoxia causes the cell death, and the autophagy activity may mediate the effects of different hypoxia.


Assuntos
Autofagia/fisiologia , Sobrevivência Celular , Espécies Reativas de Oxigênio/metabolismo , Animais , Morte Celular , Hipóxia Celular , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA