Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Urol ; 23(1): 206, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082379

RESUMO

BACKGROUND: In this study, we explored the diagnostic performances of multiparametric magnetic resonance imaging (mpMRI), 68 Ga-PSMA-11 PET/CT and combination of 68 Ga-PSMA-11 PET/CT and mpMRI (mpMRI + PET/CT) for extracapsular extension (ECE). Based on the analyses above, we tested the feasibility of using mpMRI + PET/CT results to predict T staging in prostate cancer patients. METHODS: By enrolling 75 patients of prostate cancer with mpMRI and 68 Ga-PSMA-11 PET/CT before radical prostatectomy, we analyzed the detection performances of ECE in mpMRI, 68 Ga-PSMA-11 PET/CT and mpMRI + PET/CT on their lesion images matched with their pathological sample images layer by layer through receiver operating characteristics (ROC) analysis. By inputting the lesion data into Prostate Imaging Reporting and Data System (PI-RADS), we divided the lesions into different PI-RADS scores. The improvement of detecting ECE was analyzed by net reclassification improvement (NRI). The predictors for T staging were evaluated by using univariate and multivariable analysis. The Kappa test was used to evaluate the prediction ability. RESULTS: One hundred three regions of lesion were identified from 75 patients. 50 of 103 regions were positive for ECE. The ECE diagnosis AUC of mpMRI + PET/CT is higher than that of mpMRI alone (ΔAUC = 0.101; 95% CI, 0.0148 to 0.1860; p < 0.05, respectively). Compared to mpMRI, mpMRI + PET/CT has a significant improvement in detecting ECE in PI-RADS 4-5 (NRI 36.1%, p < 0.01). The diagnosis power of mpMRI + PET/CT was an independent predictor for T staging (p < 0.001) in logistic regression analysis. In patients with PI-RADS 4-5 lesions, 40 of 46 (87.0%) patients have correct T staging prediction from mpMRI + PET/CT (κ 0.70, p < 0.01). CONCLUSION: The prediction of T staging in PI-RADS 4-5 prostate cancer patients by mpMRI + PET/CT had a quite good performance.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Gálio , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos
2.
J Control Release ; 363: 221-234, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717657

RESUMO

Checkpoint blockade immunotherapy (CBI) have exhibited remarkable benefits for cancer therapy. However, the low responsivity of CBI hinders its application in treatment of bladder cancer. Ferroptosis shows potential for increasing the responsivity of CBI by inducing immunogenic cell death (ICD) process. Herein, we developed a mitochondrial-targeted liposome loaded with brequinar (BQR) (BQR@MLipo) for enhancing the mitochondrial-related ferroptosis in bladder cancer in situ. It could be found that BQR@MLipo could selectively accumulate into mitochondria and inactivate dihydroorotate dehydrogenase (DHODH), which induced extensive mitochondrial lipid peroxidation and ROS, finally triggering ferroptosis of bladder cancer cells to boost the release of intracellular damage-associated molecular patterns (DAMPs) such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box 1 (HMGB1). In addition, BQR@MLipo further promoted the release of mtDNA into the cytoplasm to activate the cGAS-STING pathway for the secretion of IFN-ß, which would increase the cross-presentation of antigens by dendritic cells and macrophage phagocytosis. Furthermore, the in vivo studies revealed that BQR@MLipo could remarkably accumulate into the bladder tumor and successfully initiate the infiltration of CD8+ T cells into tumor microenvironment for enabling efficient CBI to inhibit bladder tumor growth. Therefore, BQR@MLipo may represent a clinically promising modality for enhancing CBI in bladder tumor.


Assuntos
Ferroptose , Neoplasias da Bexiga Urinária , Humanos , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Lipossomos , Imunoterapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Mitocôndrias , Linhagem Celular Tumoral , Microambiente Tumoral
3.
BMC Cancer ; 22(1): 677, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725444

RESUMO

Immunotherapy has emerged as a robust clinical strategy for cancer treatment. PD1/PD-L1 inhibitors have been used as second-line therapy for urothelial carcinoma due to the high tumor mutational burden. Despite the efficacy of the treatment is significant, the response rate is still poor. The tumor immune microenvironment plays a key role in the regulation of immunotherapeutic efficacy. However, a comprehensive understanding of the intricate microenvironment in clinical samples remains unclear. To obtain detailed systematic tumor immune profile, we performed an in-depth immunoassay on 12 human urothelial carcinoma tissue samples and 14 paratumor tissue samples using mass cytometry. Among the large number of cells assayed, we identified 71 T-cell phenotypes, 30 tumor-associated macrophage phenotypes. T cell marker expression profiles showed that almost all T cells in the tumor tissue were in a state of exhaustion. CD38 expression on tumor-associated macrophages (TAMs) was significantly higher than PDL1, and CD38+ TAMs were closely associated with immunosuppression. CD38 may be a more suitable target for immunotherapy in urothelial carcinoma compared to PD1/PDL1. This single-cell analysis of clinical samples expands our insights into the immune microenvironment of urothelial carcinoma and reveals potential biomarkers and targets for immunotherapy development.


Assuntos
Carcinoma de Células de Transição , Imunoterapia , Neoplasias da Bexiga Urinária , Antígeno B7-H1/metabolismo , Carcinoma de Células de Transição/imunologia , Humanos , Linfócitos T , Microambiente Tumoral , Neoplasias da Bexiga Urinária/imunologia
4.
Theranostics ; 10(17): 7683-7696, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685013

RESUMO

Tumor hypoxia, acidosis, and excessive reactive oxygen species (ROS) were the main characteristics of the bladder tumor microenvironment (TME), and abnormal TME led to autophagy activation, which facilitated cancer cell proliferation. The therapeutic efficacy of autophagy inhibitors might also be impeded by abnormal TME. To address these issues, we proposed a new strategy that utilized manganese dioxide (MnO2) nanoparticles to optimize the abnormal TME and revitalize autophagy inhibitors, and both oxygenation and autophagy inhibition may sensitize the tumor cells to radiation therapy. Methods: By taking advantage of the strong affinity between negatively charged MnO2 and positively charged chloroquine (CQ), the nanoparticles were fabricated by integrating MnO2 and CQ in human serum albumin (HSA)-based nanoplatform (HSA-MnO2-CQ NPs). Results: HSA-MnO2-CQ NPs NPs efficiently generated O2 and increased pH in vitro after reaction with H+/H2O2 and then released the encapsulated CQ in a H+/H2O2 concentration-dependent manner. The NPs restored the autophagy-inhibiting activity of chloroquine in acidic conditions by increasing its intracellular uptake, and markedly blocked hypoxia-induced autophagic flux. In vivo studies showed the NPs improved pharmacokinetic behavior of chloroquine and effectively accumulated in tumor tissues. The NPs exhibited significantly decreased tumor hypoxia areas and increased tumor pH, and had remarkable autophagy inhibition efficacy on bladder tumors. Finally, a significant anti-tumor effect achieved by the enhanced autophagy inhibition and radiation sensitization. Conclusions: HSA-MnO2-CQ NPs synergistically regulated the abnormal TME and inhibited autophagic flux, and effectively sensitized radiation therapy to treat bladder cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Quimiorradioterapia/métodos , Portadores de Fármacos/química , Radiossensibilizantes/administração & dosagem , Neoplasias da Bexiga Urinária/terapia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cloroquina/administração & dosagem , Cloroquina/farmacocinética , Sinergismo Farmacológico , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Masculino , Compostos de Manganês/administração & dosagem , Compostos de Manganês/farmacocinética , Camundongos , Nanopartículas/química , Óxidos/administração & dosagem , Óxidos/farmacocinética , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Albumina Sérica Humana/química , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA