RESUMO
Somatostatin, a growth hormone-release inhibiting peptide, exerts antiproliferative and antiangiogenic effects on tumor cells. However, the short half-life of somatostatin limits its application in human therapy, and long-acting somatostatin fusion protein is also limited by its severe terminal degradation. Therefore, oncolytic virus delivery system was introduced to express somatostatin fusion protein and the anti-tumor effects of both somatostatin and oncolytic virus were combined to destroy tumor tissues. Here, a vaccinia VG9/(SST-14)2-HSA recombinant was constructed by replacing somatostatin fusion gene into TK locus of attenuated VG9 strain via homologous recombination. Results showed that vaccinia VG9/(SST-14)2-HSA possessed a combined anti-tumor effect on sstr-positive tumor cells in vitro. In the tumor burden models, BALB/c mice with complete immunity are most suitable for evaluating tumor regression and immune activation. Complete tumor regression was observed in 3 out of 10 mice treated with vaccinia VG9/TK- or VG9/(SST-14)2-HSA, and the survival of all mice in both groups was significantly prolonged. Besides, vaccinia VG9/(SST-14)2-HSA is more effective in prolonging survival than VG9/TK-. Vaccinia VG9/(SST-14)2-HSA exerts a combined anti-tumor efficacy including the oncolytic ability provided by the virus and the anti-tumor effect contributed by (SST-14)2-HSA, which is expected to become a potent therapeutic agent for cancer treatment.
Assuntos
Neoplasias , Terapia Viral Oncolítica , Vacínia , Animais , Hormônio do Crescimento/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Vaccinia virusRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is a highly refractory cancer associated with increasing mortality, which currently lacks effective treatment options. Interleukin-24 (IL-24) is a novel tumor suppressor cytokine that can selectively induce cancer cell apoptosis, and it has been utilized as a cancer gene therapy strategy. The vaccinia virus is a promising strategy for cancer therapy, owing to its direct viral lytic effects, as well as a vehicle to overexpress therapeutic transgenes. METHODS: We constructed a recombinant oncolytic vaccinia viruse (VG9-IL-24) based on vaccinia virus Guang9 (VG9) harboring the IL-24 gene. In vitro, we assessed the replication of VG9-IL-24 in HCC cell lines and normal liver cells and evaluated the cytotoxicity in different cell lines; then, we determined the expression of IL-24 by RT-PCR and ELISA. We examined apoptosis and cell cycle progression in SMMC-7721 cells treated with VG9-IL-24 by flow cytometry. In vivo, we established the SMMC-7721 xenograft mouse model to evaluate the antitumor effects of VG9-IL-24. RESULTS: In vitro, VG9-IL-24 efficiently infected HCC cell lines, but not normal liver cells, and resulted in a high level of IL-24 expression and significant cytotoxicity. Moreover, VG9-IL-24 induced an increase in the proportion of apoptotic cells and blocked the SMMC-7721 cell cycle in the G2/M phase. In vivo, tumor growth was significantly suppressed and the survival was prolonged in VG9-IL-24-treated mice. CONCLUSIONS: Vaccinia virus VG9-mediated gene therapy might be an innovative treatment for cancer with tumor-specific lysis and apoptosis-inducing effects. VG9-IL-24 exhibited enhanced antitumor effects and is a promising candidate for HCC therapy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Apoptose , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Humanos , Interleucinas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vaccinia virus/genéticaRESUMO
MicroRNAs (miRNAs) are currently recognized as novel biomarkers for cancer early diagnosis, therapy selection, and progression monitoring. Herein, we developed an ultrasensitive and label-free homogeneous colorimetric strategy for miRNA detection based on engineering entropy-driven amplification (EDA) coupled with nicking enzyme-assisted AuNP aggregation. In our design, the target miRNA could specifically trigger the EDA recycling process. One of the EDA products could open the hairpin probe and form a dual strand containing a nicking endonuclease (Nb.BbvCl) cleavage region. After adding nicking endonuclease in the sensing solution, the product DNA fragments could act as two linkers, inducing the aggregation of ssDNA-modified AuNPs. Simultaneously, the liberating complementary strands continued to cyclic hybridization with the hairpin probe. This multiple signal amplification colorimetric strategy showed a wide linear range from 10 fM to 100 pM with a much lower detection limit of 3.13 fM for miRNA let-7a, which also performed well in a complex sample matrix. Most importantly, the naked eye could clearly distinguish the 10 fM color change caused by let-7a to be measured. Moreover, this approach could easily extend to multiple miRNAs with target-specific sequence substitutions. Therefore, this ultrasensitive visual strategy for miRNA demonstrated attractive potentials for promising applications in clinical diagnosis.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Entropia , Ouro , Limite de Detecção , MicroRNAs/genética , Técnicas de Amplificação de Ácido NucleicoRESUMO
Lectins are highly specific binding proteins for glycoproteins which widely exist in living organisms, playing a vital role in exploring the biological evolution process, such as cellular proliferation, differentiation, carcinogenesis and apoptosis. Therefore, the content monitoring of lectin becomes particularly significant and urgent in the bioanalytical application. In this work, we fabricated an aptasensor, majorly capitalizing the eminent affinity between sialic acid-binding immunoglobulin (Ig)-like lectin 5 (Siglec-5) and nucleic acids aptamer (K19), with nontoxic MoS2@Au nanocomposites as electrochemiluminescence (ECL) emitters based on exonuclease III (Exo III)-powered DNA walker for the bioassays of Siglec-5. The DNA track was constructed on the emitters' surface, providing a reliable platform for the DNA walker's autonomous move. In the assay, the primer DNA in the DNA duplex was replaced by Siglec-5 due to the aptamer interactions and repeatedly released to participate in the movement of the DNA walker, further triggering cascade signal amplification. Finally, our aptasensor indicates significant potential for assays of Siglec-5 with a detection limit of 8.9 pM.
RESUMO
The problem of multidrug resistance (MDR) presents a major obstacle in the chemotherapy of cancer. The MDR phenotype is often linked to the overexpression of ATP-binding cassette (ABC) transporters, that pumps out and decreased intracellular drug accumulation. γ-Tocotrienol, an unsaturated tocopherol belonging to the vitamin E family, has been shown to reverse the MDR of MCF-7/Adr cell. To reveal the role of γ-tocotrienol-NF-κB-P-gp axis in the reversal process, the expression level of mdr1/P-gp was determined by real-time PCR and western blot, while NF-κB activity was detected by immunofluorescence and NF-κB transcriptional activity reporter assay. Besides, mdr1 promoter activity and P-gp transport capacity were measured with the effect of γ-tocotrienol and NF-κB agonist/antagonist. Results showed that γ-tocotrienol effectively inhibited the expression levels of mdr1 mRNA and P-gp protein. It is demonstrated that γ-tocotrienol also suppressed mdr1 promoter activity and the efflux activity of P-gp. In addition, the activation of NF-κB signaling pathway and the transcriptional activity of NF-κB were both reduced by γ-tocotrienol. Evidences also showed that the NF-κB pathway is really involved in the regulation of the expression and function of mdr1/P-gp. Taken together, we confirmed that γ-tocotrienol reversed the MDR of MCF-7/Adr through the signaling pathway of NF-κB and P-gp.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Cromanos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , Vitamina E/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , NF-kappa B/genética , Fosforilação , Vitamina E/farmacologiaRESUMO
Colorectal cancer is an aggressive malignancy for which there are limited treatment options. Oncolytic vaccinia virus is being developed as a novel strategy for cancer therapy. Arming vaccinia virus with immunostimulatory cytokines can enhance the tumor cell-specific replication and antitumor efficacy. Interleukin-24 (IL-24) is an important immune mediator, as well as a broad-spectrum tumor suppressor. We constructed a targeted vaccinia virus of Guang9 strain harboring IL-24 (VG9-IL-24) to evaluate its antitumor effects. In vitro, VG9-IL-24 induced an increased number of apoptotic cells and blocked colorectal cancer cells in the G2/M phase of the cell cycle. VG9-IL-24 induced apoptosis in colorectal cancer cells via multiple apoptotic signaling pathways. In vivo, VG9-IL-24 significantly inhibited the tumor growth and prolonged the survival both in human and murine colorectal cancer models. In addition, VG9-IL-24 stimulated multiple antitumor immune responses and direct bystander antitumor activity. Our results indicate that VG9-IL-24 can inhibit the growth of colorectal cancer tumor by inducing oncolysis and apoptosis as well as stimulating the antitumor immune effects. These findings indicate that VG9-IL-24 may exert a potential therapeutic strategy for combating colorectal cancer.
Assuntos
Neoplasias Colorretais/terapia , Interleucinas/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/metabolismo , Vaccinia virus/metabolismo , Adjuvantes Imunológicos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/virologia , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Vírus Oncolíticos/imunologia , Vaccinia virus/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE: Oncolytic viruses are emerging as promising options for clinical cancer treatment due to their inherent ability of tumor tropism and oncolytic property. Aside from tumor lysis, oncolytic viruses can induce host immune responses against tumor cells and may thus be viewed as a form of immunotherapy. METHODS: The attenuated vaccinia VG9-Luc, which originated from Chinese vaccinia Tian Tan strain, was constructed to express firefly luciferase for bioluminescence imaging and to disrupt the thymidine kinase gene for promoting tumor specificity. An in vivo bioluminescence imaging was performed to observe the virus distribution in live mice. The titers of neutralizing antiviral and antitumor antibodies in plasma were determined by time-resolved fluoroimmunoassay. RESULTS: Except BALB/c mice treated with intravenous virus injection, all immunocompromised and immunocompetent mice showed obvious tumor targeting ability of vaccinia VG9-Luc. Besides, host immune response activated by vaccinia VG9-Luc showed the production of antiviral and antitumor antibodies, the process of which was similar between intravenous and intratumoral viral delivery systems. The results indicated that virus infection promoted tumor-specific immunity by increasing the production of antitumor antibodies. Moreover, virus reinjection was performed and a more rapid viral clearance was observed in immunocompetent mice compared with first virus infection. CONCLUSION: The thymidine kinase-deleted vaccinia Guang9 strain, which has the properties of tumor specificity and antitumor immunity, is a promising candidate vector for cancer therapy.
RESUMO
BACKGROUND: Vaccinia viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability of tumor tropism and oncolytic property. Cytosine deaminase (CD), which is derived from bacteria or yeast, can convert a relatively nontoxic prodrug 5-fluorocytosine (5-FC) into the active anticancer drug 5-Fluorouracil (5-FU). Vaccinia virus armed with the prodrug-activator CD gene would result in augmented antitumor effects that combined the effect of vaccinia virus and 5-FU together, and particularly limited the anticancer drug to tumor regions. METHODS: The attenuated vaccinia Tian Tan strain Guang 9 (VG9), with active yeast CD expression and thymidine kinase (TK) deficiency, was successfully constructed. Then, in vitro and in vivo antitumor efficacy of vaccinia VG9-CD plus 5-FC administration was evaluated in colorectal cancer cells. RESULTS: Vaccinia viruses displayed different oncolytic potency in vitro cells, no relationship with whether they were cancer cells or normal cells. In colorectal tumor models, mice treated with vaccinia VG9-TK- showed better tumor remission ability and prolonged survival. Moreover, vaccinia VG9-CD in combination with gavage administration of 5-FC displayed the best antitumor efficacy, especially for the prolongation of survival. CONCLUSIONS: Vaccinia VG9-CD in combination with 5-FC plays combined effect of vaccinia virus and chemotherapy, and becomes a promising virotherapy for cancer.
RESUMO
PURPOSE: Targeted oncolytic vaccinia virus is an attractive candidate for cancer therapy due to its replication causing lysis of infected tumor cells as well as a delivery vector to overexpress therapeutic transgenes. This study constructed a novel oncolytic vaccinia virus carrying granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-24 (IL-24) double genes to improve efficacy for cancer therapy. METHODS: Vaccinia virus co-expressing GM-CSF and IL-24 based on Chinese Guang9 strain (VG9-GMCSF-IL24) was constructed with disruption of the viral thymidine kinase (TK) gene. The cytotoxicity of VG9-GMCSF-IL24 in various cell lines was assessed by MTT. The synergistic antitumor effect of VG9-GMCSF-IL24 in vivo was assessed on multiple tumor models. RESULTS: In vitro cytotoxicity assay showed that VG9-GMCSF-IL24 exerted a strongly cytotoxic effect on cancer cells, but with no significant cytotoxicity to normal cells. Significant tumor growth inhibition and prolonged survival were observed in different tumor models treated with VG9-GMCSF-IL24. Additionally, systemic and specific antitumoral immunity was investigated in vivo, and enhanced antitumor immunity was observed in VG9-GMCSF-IL24-treated mice. CONCLUSION: Our results indicated that VG9-mediated GM-CSF and IL-24 co-expression performed cooperative and overlapping antitumor effect. As a novel and effective therapeutic strategy for cancer, the combination of oncolysis and immunotherapy with vaccinia virus carrying one or more immunostimulatory genes may have a satisfactory clinical application prospect.
RESUMO
Background: Breast cancer is a heterogeneous disease with high aggression and novel targeted therapeutic strategies are required. Oncolytic vaccinia virus is an attractive candidate for cancer treatment due to its tumor cell-specific replication causing lysis of tumor cells as well as a delivery vector to overexpress therapeutic transgenes. Interleukin-24 (IL-24) is a novel tumor suppressor cytokine that selectively induces apoptosis in a wide variety of tumor types, including breast cancer. In this study, we used vaccinia virus as a delivery vector to express IL-24 gene and antitumor effects were evaluated both in vitro and in vivo. Methods: The vaccinia virus strain Guang9 armed with IL-24 gene (VG9-IL-24) was constructed via disruption of the viral thymidine kinase (TK) gene region. The cytotoxicity of VG9-IL-24 in various breast cancer cell lines was assessed by MTT and cell cycle progression and apoptosis were examined by flow cytometry. In vivo antitumor effects were further observed in MDA-MB-231 xenograft mouse model. Results: In vitro, VG9-IL-24 efficiently infected and selectively killed breast cancer cells with no strong cytotoxicity to normal cells. VG9-IL-24 induced increased number of apoptotic cells and blocked breast cancer cells in the G2/M phase of the cell cycle. Western blotting results indicated that VG9-IL-24-mediated apoptosis was related to PI3K/ß-catenin signaling pathway. In vivo, VG9-IL-24 delayed tumor growth and improved survival. Conclusions: Our findings provided documentation that VG9-IL-24 was targeted in vitro and exhibited enhanced antitumor effects, and it may be an innovative therapy for breast cancer.
RESUMO
Oncolytic vaccinia virus is currently undergoing evaluation as a biological anticancer agent in clinical trials. This treatment exploits the lytic nature of a viral infection to eradicate the tumor mass in a cancer cellspecific manner. So far, various vaccinia strains have been used as backbones in the design of oncolytic agents. However, the efficacy as oncolytic virotherapy of Chinese vaccinia strain Tian Tan (VTT) has not been reported. Vaccinia strain Guang9 (VG9), derived from VTT by consecutive plaquecloning selection, was attenuated to a greater extent than its parental strain. In this study, the oncolytic efficacy of VG9 was evaluated. We examined in vitro replication and cytotoxicity, in vivo biodistribution, and antitumor effects in a B16 tumor model. The results revealed that VG9 replicated rapidly, but the cytotoxicity varied in different cell lines. Significant antitumor effects of VG9 were observed in a murine melanoma tumor model, and an antitumor cytotoxic Tlymphocyte response induced by VG9 was also observed. The results indicated that the Chinese vaccinia strain VG9 holds promise in the construction of a recombinant vaccinia virus vector and as a potential therapeutic strategy in cancer treatment.
Assuntos
Neoplasias/terapia , Neoplasias/virologia , Vírus Oncolíticos/fisiologia , Vaccinia virus/fisiologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células NIH 3T3 , Terapia Viral Oncolítica/métodos , Distribuição Tecidual/fisiologia , Replicação Viral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Vaccinia virus has been used as an oncolytic virus because of its capacity to preferentially infect tumors rather than normal tissues. The vaccinia Tian Tan strain, used as a vaccine against smallpox for millions of people in China, is a promising candidate for cancer therapy. In this study, we constructed an attenuated Tian Tan strain of Guang9 with a disrupted thymidine kinase gene to enhance tumor selectivity and an inserted firefly luciferase to monitor the viral distribution by in vivo bioluminescence imaging. Living animal imaging confirmed the high specificity of vaccinia Guang9 for tumor targeting after intratumoral and intraperitoneal administration. In addition, the vaccinia Guang9 strain produced higher in vivo luciferase activity and endured longer in immunocompromised nude mice than in immunocompetent C57BL/6 mice, all of which had been tumor-challenged. The luciferase activity and viral titers in excised tissues confirmed these conclusions. These data provide evidence for the safety and efficacy of the clinical application of vaccinia virus, which would be a promising approach for cancer therapy.
RESUMO
AIMS: The aim of this work was to examine the antitumor effects and mechanisms of M4IDP, a zoledronic acid derivative, on human colorectal cancer (CRC) HCT116 cells. MAIN METHODS: The effects of M4IDP on proliferation, cell cycle and ROS production were determined by CCK-8 and flow cytometry assays. Annexin-V-FITC/PI, Hoechst 33258, MDC staining assays and Ad-mCherry-GFP-LC3B fluorescence assay were performed to investigate apoptosis and autophagy. The effects of M4IDP on the induction of ER stress as well as the expression of cell cycle, apoptosis and autophagy-related proteins were analyzed by western blot assay. KEY FINDINGS: M4IDP exhibited strong and sustained inhibitory effect on the growth of HCT116 cells. G1 arrest caused by M4IDP might be attributed to the enhancement of p27 and reduction of cyclin D1 expression. Proper-time treatment of M4IDP activated autophagy and promoted autophagic flux, while long-time treatment might inhibit the autophagic degradation and undermine the autophagy. M4IDP-induced apoptosis and autophagy were related to the ROS production and subsequent ER stress. M4IDP treatment increased the expression of PTEN, inhibited the phosphorylation of PDK1, Akt, mTOR, p70S6K, and increased the phosphorylation of GSK-3ß and Bad, suggesting that the inhibition of PI3K/Akt/mTOR pathway might be involved in the antitumor activities of M4IDP. SIGNIFICANCE: Our study indicates the antitumor properties of M4IDP and its potential clinical use in CRC therapy by blocking PI3K/Akt/mTOR pathway. This study also provides a better understanding of the antitumor effects and the underlying mechanisms of bisphosphonates in the field of CRC therapy.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Difosfonatos/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Imidazóis/farmacologia , Autofagia/efeitos dos fármacos , Western Blotting , Neoplasias do Colo/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HCT116 , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Oncolytic virotherapy is being developed as a promising platform for cancer therapy due to its ability to lyse cancer cells in a tumor-specific manner. Vaccinia virus has been used as a live vaccine in the smallpox eradication program and now is being potential in cancer therapy with a great safety profile. Vaccinia strain Guang9 (VG9) is an attenuated Chinese vaccinia virus and its oncolytic efficacy has been evaluated in our previous study. To improve the tumor selectivity and oncolytic efficacy, we here developed a thymidine kinase (TK)-deleted vaccinia virus based on Guang9 strain. The viral replication, marker gene expression and cytotoxicity in various cell lines were evaluated; antitumor effects in vivo were assessed in multiple tumor models. In vitro, the TK-deleted vaccinia virus replicated rapidly, but the cytotoxicity varied in different cell lines. It was notably attenuated in normal cells and resting cells in vitro, while tumor-selectively replicated in vivo. Significant antitumor effects were observed both in murine melanoma tumor model and human hepatoma tumor model. It significantly inhibited the growth of subcutaneously implanted tumors and prolonged the survival of tumor-bearing mice. Collectively, TK-deleted vaccinia strain Guang9 is a promising constructive virus vector for tumor-directed gene therapy and will be a potential therapeutic strategy in cancer treatment.
Assuntos
Neoplasias Experimentais/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Timidina Quinase/genética , Vaccinia virus/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células NIH 3T3 , Neoplasias Experimentais/genética , Neoplasias Experimentais/virologia , Vírus Oncolíticos/fisiologia , Timidina Quinase/deficiência , Resultado do Tratamento , Vaccinia virus/fisiologia , Células VeroRESUMO
The maintenance of bone homeostasis is largely dependent upon cellular communication between osteoclasts and osteoblasts. Microvesicles (MVs) represent a novel mechanism for osteoblasts and osteoclasts communication, as has been demonstrated in our previous study. Sphingomyelinases catalyze the hydrolysis of sphingomyelin, which leads to increased membrane fluidity and facilitates MV generation. This effect can be inhibited by imipramine, an inhibitor of acid sphingomyelinase (ASM), which is also known as a member of tricyclic antidepressants (TCAs). A recent study has reported that in vitro treatment of imipramine blocked MVs release from glial cells. However, whether imipramine has this effect on osteoblast-derived MVs and whether it is involved in MV generation in vivo is unclear. Here, our investigations found that imipramine slightly reduced the expression of osteoblast differentiation of related genes, but did not impact parathyroid hormone (PTH) regulation for these genes and also did not affect receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast formation; however, imipramine treatment blocked MVs released from osteoblasts and inhibited MV-induced osteoclast formation. In vivo, mice administrated with imipramine were protected from ovariectomy-induced bone loss as evaluated by various bone structural parameters and serum levels of biochemical markers. Our results suggest that inhibiting the production of MVs containing RANKL in vivo is very important for preventing bone loss.
Assuntos
Conservadores da Densidade Óssea/farmacologia , Micropartículas Derivadas de Células/efeitos dos fármacos , Imipramina/farmacologia , Osteoblastos/metabolismo , Osteoporose Pós-Menopausa/tratamento farmacológico , Animais , Conservadores da Densidade Óssea/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Feminino , Humanos , Imipramina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoblastos/citologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteoporose Pós-Menopausa/metabolismo , Hormônio Paratireóideo/metabolismo , Ligante RANK/metabolismoRESUMO
In addition to its antioxidant properties, γ-tocotrienol also has the ability to inhibit HMG-CoA reductase, which is the key enzyme in the mevalonate pathway for cholesterol biosynthesis. Statins, the competitive inhibitors of HMG-CoA reductase, display potent anticancer activity and reversal ability of multidrug resistance in a variety of tumor cells, which is believed to be due to their inhibition of HMG-CoA reductase. Here, we determined the role of the mevalonate pathway in γ-tocotrienol-mediated reversal of multidrug resistance in cancer cells. We found both γ-tocotrienol and atorvastatin effectively reversed multidrug resistance of MCF-7/Adr and markedly inhibited the intracellular levels of FPP and GGPP. Exogenous addition of mevalonate or FPP and GGPP almost completely prevented the reversal ability of atorvastatin but only partly attenuated the reversal effect of γ-tocotrienol on doxorubicin resistance. In addition, γ-tocotrienol actively inhibited the expression of P-gp and increased the accumulation of doxorubicin in cells, which led to the enhanced G2/M arrest and cell apoptosis. Taken together, γ-tocotrienol reversed the multidrug resistance of MCF-7/Adr with a mechanism distinct from that of atorvastatin. Instead of the mevalonate pathway, the inhibition of P-gp expression is a potential mechanism by which γ-tocotrienol reverses multidrug resistance in MCF-7/Adr.
Assuntos
Atorvastatina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Cromanos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Vitamina E/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Feminino , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Células MCF-7 , Potencial da Membrana Mitocondrial , Ácido Mevalônico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vitamina E/farmacologiaRESUMO
The osteoblastic expression of RANKL, which is essential for the communication between osteoblastic cells and osteoclastogenic cells, is stimulated by locally acting or circulating osteotropic cytokines and hormones such as PTH and 1,25-(OH)2-D3 during the bone remodeling process. However, mechanisms those control subcellular trafficking events, membrane expression and extracellular secretion of the newly synthesized RANKL are still not well understood. In our previous study, we have found that the deficiency of osteoblastic Arl6ip5 (ADP-ribosylation-like factor 6 interacting protein 5), an endoplasmic reticulum (ER)-localized protein belonging to the prenylated rab-acceptor-family, enhanced osteoclastogenesis by increasing RANKL transcription in an ER stress dependent signaling. Here we found that over-expression of hemagglutinin (HA)-tagged Arl6ip5 in UAMS32 stromal/osteoblastic cells inhibited osteoclastogenesis, decreased the amount of soluble RANKL in culture supernatant and increased RANKL retention in ER. Moreover, Arl6ip5 bound with RANKL and disturbed the RANKL-OPG complex in UAMS-32 cells. Finally, 1 to 36 amino acid deletion on the NH2 lumen terminus of Arl6ip5 impaired the interaction between Arl6ip5 and RANKL, restored the level of soluble RANKL and the osteoclastogenic ability. These findings indicated that Arl6ip5 was an anti-catabolic factor by binding with RANKL and disturbing its subcellular trafficking in osteoblast.
Assuntos
Proteínas de Transporte/metabolismo , Osteoblastos/metabolismo , Ligante RANK/metabolismo , Frações Subcelulares/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico , Proteínas de Membrana Transportadoras , Camundongos , Osteoblastos/ultraestrutura , Regulação para Cima/fisiologiaRESUMO
The maintenance of bone homeostasis is largely dependent upon cellular communication between osteoclasts and osteoblasts. Microvesicles (MVs) have received a good deal of attention and are increasingly considered as mediators of intercellular communication due to their capacity to merge with and transfer a repertoire of bioactive molecular content (cargo) to recipient cells, triggering a variety of biologic responses. Here, we demonstrated that MVs shed from osteoblasts contain RANKL protein and can transfer it to osteoclast precursors through receptor ligand (RANKL-RANK), leading to stimulation of RANKL-RANK signaling to facilitate osteoclast formation. Such MV-mediated intercellular communication between osteoblasts and osteoclasts may represent a novel mechanism of bone modeling and remodeling. It may be worthwhile to further explore MVs as tools to modify the biological responses of bone cells or develop an alternative drug to treat bone diseases.
Assuntos
Remodelação Óssea/fisiologia , Comunicação Celular/fisiologia , Micropartículas Derivadas de Células/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Animais , Western Blotting , Linhagem Celular , Citometria de Fluxo , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Ligante RANK/metabolismoRESUMO
Somatostatin, a natural inhibitor of growth hormone (GH), and its analogs have been used in clinical settings for the treatment of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndromes. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins and Pichia pastoris was used as an expression system. Three fusion proteins (SS28)(2)-HSA, (SS28)(3)-HSA, and HSA-(SS28)(2), were constructed with different fusion copies of somatostatin-28 and fusion orientations. The expression level of (SS28)(3)-HSA was much lower than (SS28)(2)-HSA and HSA-(SS28)(2) due to the additional fusion of the somatostatin-28 molecule. MALDI-TOF mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard, somatostatin-14, all three fusion proteins were able to inhibit GH secretion in blood, with (SS28)(2)-HSA being the most effective one. A pharmacokinetics study showed that (SS28)(2)-HSA had a prolonged half-life of 2 h. These results showed that increasing the number of small protein copies fused to HSA may not be a suitable method for improving protein bioactivity.
Assuntos
Pichia/genética , Albumina Sérica/genética , Somatostatina-28/biossíntese , Animais , Fermentação , Meia-Vida , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pichia/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Somatostatina-28/genética , Somatostatina-28/farmacologiaRESUMO
BACKGROUND: γ-tocotrienol (GT3), an analogue of vitamin E, has gained increasing scientific interest recently as it provides significant health benefits. It has been shown that emulsified GT3, after subcutaneous administration, has long-term biological effects. However, whether the effects are due to the increase of GT3 level in the early phase following administration or the persistent functions after accumulation in tissues is unknown. This study was conducted to determine the levels of GT3 in different tissues by high performance liquid chromatography (HPLC) with a fluorescence detector after a single-dose of GT3 with polyethylene glycol (PEG-400) emulsion via subcutaneous injection. Previous studies have explored that GT3 has favorable effects on bone and can inhibit osteoclast formation. To confirm the persistent biological activity of accumulated GT3 in tissues, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) gene expressions, which have an important role in regulating osteoclast formation, were also evaluated in bone tissue on day 1, 3, 7 and 14 after a signal subcutaneous injection of GT3. METHODS: C57BL/6 female mice were administrated GT3 (100 mg/kg body weight) with PEG-400 emulsion by subcutaneous injection. GT3 levels in different tissues were determined by HPLC with a fluorescence detector. Gene expressions were measured by real-time PCR. RESULTS: GT3 predominantly accumulated in adipose and heart tissue, and was maintained at a relatively stable level in bone tissues after a single-dose administration. Accumulated GT3 in bone tissues significantly inhibited the increase in RANKL expression and the decrease in OPG expression induced by db-cAMP. CONCLUSIONS: We investigated the tissue distribution of GT3 with PEG emulsion by subcutaneous administration, which has never been reported so far. Our results suggest that GT3 with PEG emulsion accumulated in tissues is able to carry out a long-term biological effect and has therapeutic value for treating and preventing osteoporosis.