Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 63(2): 621-637, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31910010

RESUMO

Dysregulation of translation initiation factor 4E (eIF4E) activity occurs in various cancers. Mitogen-activated protein kinase (MAPK) interacting kinases 1 and 2 (MNK1 and MNK2) play a fundamental role in activation of eIF4E. Structure-activity relationship-driven expansion of a fragment hit led to discovery of dual MNK1 and MNK2 inhibitors based on a novel pyridine-benzamide scaffold. The compounds possess promising in vitro and in vivo pharmacokinetic profiles and show potent on target inhibition of eIF4E phosphorylation in cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Linhagem Celular Tumoral , Cristalografia por Raios X , Descoberta de Drogas , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Humanos , Modelos Moleculares , Fosforilação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Relação Estrutura-Atividade
2.
ACS Med Chem Lett ; 10(6): 978-984, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31223458

RESUMO

SMYD3 is a histone methyltransferase that regulates gene transcription, and its overexpression is associated with multiple human cancers. A novel class of tetrahydroacridine compounds which inhibit SMYD3 through a covalent mechanism of action is identified. Optimization of these irreversible inhibitors resulted in the discovery of 4-chloroquinolines, a new class of covalent warheads. Tool compound 29 exhibits high potency by inhibiting SMYD3's enzymatic activity and showing antiproliferative activity against HepG2 in 3D cell culture. Our findings suggest that covalent inhibition of SMYD3 may have an impact on SMYD3 biology by affecting expression levels, and this warrants further exploration.

3.
ACS Med Chem Lett ; 10(3): 318-323, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30891133

RESUMO

The atypical protein kinase C-iota (PKC-ι) enzyme is implicated in various cancers and has been put forward as an attractive target for developing anticancer therapy. A high concentration biochemical screen identified pyridine fragment weakly inhibiting PKC-ι with IC50 = 424 µM. Driven by structure-activity relationships and guided by docking hypothesis, the weakly bound fragment was eventually optimized into a potent inhibitor of PKC-ι (IC50= 270 nM). Through the course of the optimization, an intermediate compound was crystallized with the protein, and careful analysis of the X-ray crystal structure revealed a unique binding mode involving the post-kinase domain (C-terminal tail) of PKC-ι.

4.
J Med Chem ; 61(10): 4348-4369, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29683667

RESUMO

Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by bcr-abl1, a constitutively active tyrosine kinase fusion gene responsible for an abnormal proliferation of leukemic stem cells (LSCs). Inhibition of BCR-ABL1 kinase activity offers long-term relief to CML patients. However, for a proportion of them, BCR-ABL1 inhibition will become ineffective at treating the disease, and CML will progress to blast crisis (BC) CML with poor prognosis. BC-CML is often associated with excessive phosphorylated eukaryotic translation initiation factor 4E (eIF4E), which renders LSCs capable of proliferating via self-renewal, oblivious to BCR-ABL1 inhibition. In vivo, eIF4E is exclusively phosphorylated on Ser209 by MNK1/2. Consequently, a selective inhibitor of MNK1/2 should reduce the level of phosphorylated eIF4E and re-sensitize LSCs to BCR-ABL1 inhibition, thus hindering the proliferation of BC LSCs. We report herein the structure-activity relationships and pharmacokinetic properties of a selective MNK1/2 inhibitor clinical candidate, ETC-206, which in combination with dasatinib prevents BC-CML LSC self-renewal in vitro and enhances dasatinib antitumor activity in vivo.


Assuntos
Crise Blástica/tratamento farmacológico , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Crise Blástica/patologia , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos SCID , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA