Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 25(4): 821-830, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-29895895

RESUMO

Childhood-onset schizophrenia (COS) is a rare and severe form of schizophrenia defined as onset before age of 13. Here we report on two unrelated cases diagnosed with both COS and alternating hemiplegia of childhood (AHC), and for whom two distinct pathogenic de novo variants were identified in the ATP1A3 gene. ATP1A3 encodes the α-subunit of a neuron-specific ATP-dependent transmembrane sodium-potassium pump. Using whole exome sequencing data derived from a cohort of 17 unrelated COS cases, we also examined ATP1A3 and all of its interactors known to be expressed in the brain to establish if variants could be identified. This led to the identification of a third case with a possibly damaging missense mutation in ATP1A3 and three others cases with predicted pathogenic missense variants in the FXYD gene family (FXYD1, FXYD6, and FXYD6-FXYD2 readthrough). FXYD genes encode proteins that modulate the ATP-dependant pump function. This report is the first to identify variants in the same pathway for COS. Our COS study illustrates the interest of stratifying a complex condition according to the age of onset for the identification of deleterious variants. Whereas ATP1A3 is a replicated gene in rare neuropediatric diseases, this gene has previously been linked with COS in only one case report. The association with rare variants in FXYD gene family is novel and highlights the interest of exploring these genes in COS as well as in pediatric neurodevelopmental disorders.


Assuntos
Proteínas de Membrana/genética , Fosfoproteínas/genética , Esquizofrenia Infantil/genética , ATPase Trocadora de Sódio-Potássio/genética , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteínas de Membrana/metabolismo , Mutação/genética , Mutação de Sentido Incorreto/genética , Fosfoproteínas/metabolismo , Esquizofrenia Infantil/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
PLoS One ; 14(11): e0225186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725784

RESUMO

Restless legs syndrome is a common complex disorder with different genetic and environmental risk factors. Here we used human cell lines to conduct an RNA-Seq study and observed how the gene showing the most significant association with RLS, MEIS1, acts as a regulator of the expression of many other genes. Some of the genes affected by its expression level are linked to pathways previously reported to be associated with RLS. We found that in cells where MEIS1 expression was either increased or prevented, mineral absorption is the principal dysregulated pathway. The mineral absorption pathway genes, HMOX1 and VDR are involved in iron metabolism and response to vitamin D, respectively. This shows a strong functional link to the known RLS pathways. We observed the same enrichment of the mineral absorption pathway in postmortem brain tissues of RLS patients showing a reduced expression of MEIS1. The expression of genes encoding metallothioneins (MTs) was observed to be dysregulated across the RNA-Seq datasets generated from both human cells and tissues. MTs are highly relevant to RLS as they bind intracellular metals, protect against oxidative stress and interact with ferritins which manage iron level in the central nervous system. Overall, our study suggests that in a subset of RLS patients, the contribution of MEIS1 appears to be associated to its downstream regulation of genes that are more directly involved in pathways that are relevant to RLS. While MTs have been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's diseases, this is a first report to propose that they have a role in RLS.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Minerais/metabolismo , Proteína Meis1/genética , Síndrome das Pernas Inquietas/genética , Síndrome das Pernas Inquietas/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Humanos , Redes e Vias Metabólicas
3.
Mol Genet Genomic Med ; 7(1): e00467, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30415495

RESUMO

BACKGROUND: Neural tube defects (NTD) are among the most common defects affecting 1:1000 births. They are caused by a failure of neural tube closure during development. Their clinical presentation is diverse and dependent on the site and severity of the original defect on the embryonic axis. The etiology of NTD is multifactorial involving environmental factors and genetic variants that remain largely unknown. METHODS: We have conducted a whole exome sequencing (WES) study in five new NTD families and pooled the results with WES data from three NTD families and 43 trios that were previously investigated by our group. We analyzed the data using biased candidate gene and unbiased gene burden approaches. RESULTS: We identified four novel loss-of-function variants in three genes, MTHFR, DLC1, and ITGB1, previously associated with NTD. Notably, DLC1 carried two protein truncating variants in two independent cases. We also demonstrated an enrichment of variants in MYO1E involved in cytoskeletal remodeling. This enrichment reached borderline significance in a replication cohort supporting the association of this new candidate gene to NTD. CONCLUSION: These data provide some key insights into the pathogenic mechanisms of human NTD and demonstrate the power of next-generation sequencing in deciphering the genetics of this complex trait.


Assuntos
Exoma , Predisposição Genética para Doença , Defeitos do Tubo Neural/genética , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Integrina beta1/genética , Mutação com Perda de Função , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Linhagem , Proteínas Supressoras de Tumor/genética
4.
Sci Rep ; 8(1): 4356, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531279

RESUMO

Intracranial Aneurysm (IA) is a common disease with a worldwide prevalence of 1-3%. In the French-Canadian (FC) population, where there is an important founder effect, the incidence of IA is higher and is frequently seen in families. In this study, we genotyped a cohort of 257 mostly familial FC IA patients and 1,992 FC controls using the Illumina NeuroX SNP-chip. The most strongly associated loci were tested in 34 Inuit IA families and in 32 FC IA patients and 106 FC controls that had been exome sequenced (WES). After imputation, one locus at 3p14.2 (FHIT, rs1554600, p = 4.66 × 10-9) reached a genome-wide significant level of association and a subsequent validation in Nunavik Inuit cohort further confirmed the significance of the FHIT variant association (rs780365, FBAT-O, p = 0.002839). Additionally, among the other promising loci (p < 5 × 10-6), the one at 3q13.2 (rs78125721, p = 4.77 × 10-7), which encompasses CCDC80, also showed an increased mutation burden in the WES data (CCDC80, SKAT-O, p = 0.0005). In this study, we identified two new potential IA loci in the FC population: FHIT, which is significantly associated with hypertensive IA, and CCDC80, which has potential genetic and functional relevance to IA pathogenesis, providing evidence on the additional risk loci for familial IA. We also replicated the previous IA GWAS risk locus 18q11.2, and suggested a potential locus at 8p23.1 that warrants further study.


Assuntos
Hidrolases Anidrido Ácido/genética , Loci Gênicos , Predisposição Genética para Doença , Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Aneurisma Intracraniano/genética , Proteínas de Neoplasias/genética , Adulto , Idoso , Canadá , Estudos de Coortes , Proteínas da Matriz Extracelular , Feminino , Efeito Fundador , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único
5.
Cancer Res ; 77(16): 4517-4529, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28646019

RESUMO

RAD51D is a key player in DNA repair by homologous recombination (HR), and RAD51D truncating variant carriers have an increased risk for ovarian cancer. However, the contribution of nontruncating RAD51D variants to cancer predisposition remains uncertain. Using deep sequencing and case-control genotyping studies, we show that in French Canadians, the missense RAD51D variant c.620C>T;p.S207L is highly prevalent and is associated with a significantly increased risk for ovarian high-grade serous carcinoma (HGSC; 3.8% cases vs. 0.2% controls). The frequency of the p.S207L variant did not significantly differ from that of controls in breast, endometrial, pancreas, or colorectal adenocarcinomas. Functionally, we show that this mutation impairs HR by disrupting the RAD51D-XRCC2 interaction and confers PARP inhibitor sensitivity. These results highlight the importance of a functional RAD51D-XRCC2 interaction to promote HR and prevent the development of HGSC. This study identifies c.620C>T;p.S207L as the first bona fide pathogenic RAD51D missense cancer susceptibility allele and supports the use of targeted PARP-inhibitor therapies in ovarian cancer patients carrying deleterious missense RAD51D variants. Cancer Res; 77(16); 4517-29. ©2017 AACR.


Assuntos
Proteínas de Ligação a DNA/genética , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/patologia , Linhagem , Polimorfismo de Nucleotídeo Único
6.
Hum Mutat ; 38(6): 716-724, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28276201

RESUMO

Neural tube defects, including spina bifida, are among the most common birth defects caused by failure of neural tube closure during development. They have a complex etiology involving largely undetermined environmental and genetic factors. Previous studies in mouse models have implicated the transcription factor Grhl3 as an important factor in the pathogenesis of spina bifida. In the present study, we conducted a resequencing analysis of GRHL3 in a cohort of 233 familial and sporadic cases of spina bifida. We identified two novel truncating variants: one homozygous frameshift variant, p.Asp16Aspfs*10, in two affected siblings and one heterozygous intronic splicing variant, p.Ala318Glyfs*26. We also identified five missense variants, one of which was demonstrated to reduce the activation of gene targets in a luciferase reporter assay. With the previously identified p.Arg391Cys variant, eight variants were found in GRHL3. Comparison of the variant rate between our cohort and the ExAC database identified a significant enrichment of deleterious variants in GRHL3 in the whole gene and the transactivation region in spina bifida patients. These data provide strong evidence for a role of GRHL3 as a predisposing factor to spina bifida and will help dissect the complex etiology and pathogenic mechanisms of these malformations.


Assuntos
Proteínas de Ligação a DNA/genética , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética , Fatores de Transcrição/genética , Animais , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto/genética , Defeitos do Tubo Neural/fisiopatologia , Linhagem , Deleção de Sequência/genética , Disrafismo Espinal/fisiopatologia , Sequenciamento do Exoma
7.
J Hum Genet ; 62(4): 465-471, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28003643

RESUMO

Kaufman oculo-cerebro-facial syndrome (KOS) is caused by recessive UBE3B mutations and presents with microcephaly, ocular abnormalities, distinctive facial morphology, low cholesterol levels and intellectual disability. We describe a child with microcephaly, brachycephaly, hearing loss, ptosis, blepharophimosis, hypertelorism, cleft palate, multiple renal cysts, absent nails, small or absent terminal phalanges, absent speech and intellectual disability. Syndromes that were initially considered include DOORS syndrome, Coffin-Siris syndrome and Dubowitz syndrome. Clinical investigations coupled with karyotype analysis, array-comparative genomic hybridization, exome and Sanger sequencing were performed to characterize the condition in this child. Sanger sequencing was negative for the DOORS syndrome gene TBC1D24 but exome sequencing identified a homozygous deletion in UBE3B (NM_183415:c.3139_3141del, p.1047_1047del) located within the terminal portion of the HECT domain. This finding coupled with the presence of characteristic features such as brachycephaly, ptosis, blepharophimosis, hypertelorism, short palpebral fissures, cleft palate and developmental delay allowed us to make a diagnosis of KOS. In conclusion, our findings highlight the importance of considering KOS as a differential diagnosis for patients under evaluation for DOORS syndrome and expand the phenotype of KOS to include small or absent terminal phalanges, nails, and the presence of hallux varus and multicystic dysplastic kidneys.


Assuntos
Anormalidades Múltiplas/genética , Diagnóstico Diferencial , Anormalidades do Olho/genética , Deficiência Intelectual/genética , Deformidades Congênitas dos Membros/genética , Microcefalia/genética , Ubiquitina-Proteína Ligases/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/fisiopatologia , Adulto , Proteínas de Transporte/genética , Criança , Pré-Escolar , Eczema/diagnóstico , Eczema/genética , Eczema/fisiopatologia , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/fisiopatologia , Face/anormalidades , Face/fisiopatologia , Fácies , Feminino , Proteínas Ativadoras de GTPase , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Transtornos do Crescimento/fisiopatologia , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/fisiopatologia , Cariótipo , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/fisiopatologia , Masculino , Proteínas de Membrana , Microcefalia/diagnóstico , Microcefalia/fisiopatologia , Micrognatismo/diagnóstico , Micrognatismo/genética , Micrognatismo/fisiopatologia , Mutação , Pescoço/anormalidades , Pescoço/fisiopatologia , Proteínas do Tecido Nervoso , Patologia Molecular , Análise de Sequência de DNA
8.
Am J Hum Genet ; 99(5): 1072-1085, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27745834

RESUMO

Intracranial aneurysms (IAs) are the result of focal weakness in the artery wall and have a complex genetic makeup. To date, genome-wide association and sequencing studies have had limited success in identifying IA risk factors. Distinct populations, such as the French-Canadian (FC) population, have increased IA prevalence. In our study, we used exome sequencing to prioritize risk variants in a discovery cohort of six FC families affected by IA, and the analysis revealed an increased variation burden for ring finger protein 213 (RNF213). We resequenced RNF213 in a larger FC validation cohort, and association tests on further identified variants supported our findings (SKAT-O, p = 0.006). RNF213 belongs to the AAA+ protein family, and two variants (p.Arg2438Cys and p.Ala2826Thr) unique to affected FC individuals were found to have increased ATPase activity, which could lead to increased risk of IA by elevating angiogenic activities. Common SNPs in RNF213 were also extracted from the NeuroX SNP-chip genotype data, comprising 257 FC IA-affected and 1,988 control individuals. We discovered that the non-ancestral allele of rs6565666 was significantly associated with the affected individuals (p = 0.03), and it appeared as though the frequency of the risk allele had changed through genetic drift. Although RNF213 is a risk factor for moyamoya disease in East Asians, we demonstrated that it might also be a risk factor for IA in the FC population. It therefore appears that the function of RNF213 can be differently altered to predispose distinct populations to dissimilar neurovascular conditions, highlighting the importance of a population's background in genetic studies of heterogeneous disease.


Assuntos
Adenosina Trifosfatases/genética , Aneurisma Intracraniano/genética , Ubiquitina-Proteína Ligases/genética , População Branca/genética , Adulto , Idoso , Alelos , Canadá , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Técnicas de Genotipagem , Humanos , Aneurisma Intracraniano/diagnóstico , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA
9.
J Neuroinflammation ; 12: 227, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26626881

RESUMO

BACKGROUND: Several lines of evidence suggest the involvement of neuroinflammatory changes in Alzheimer's disease (AD) pathophysiology such as amyloidosis and neurodegeneration. In fact, genome-wide association studies (GWAS) have shown a link between genes involved in neuroinflammation and AD. In order to further investigate whether interactions between candidate genetic variances coding for neuroinflammatory molecules are associated with brain amyloid ß (Aß) fibrillary accumulation, we conducted an epistasis analysis on a pool of genes associated with molecular mediators of inflammation. METHODS: [(18)F]Florbetapir positron emission tomography (PET) imaging was employed to assess brain Aß levels in 417 participants from ADNI-GO/2 and posteriorly 174 from ADNI-1. IL-1ß, IL4, IL6, IL6r, IL10, IL12, IL18, C5, and C9 genes were chosen based on previous studies conducted in AD patients. Using the [(18)F]florbetapir standardized uptake value ratio (SUVR) as a quantitative measure of fibrillary Aß, epistasis analyses were performed between two sets of markers of immune-related genes using gender, diagnosis, and apolipoprotein E (APOE) as covariates. Voxel-based analyses were also conducted. The results were corrected for multiple comparison tests. Cerebrospinal fluid (CSF) Aß1-42/phosphorylated tau (p-tau) ratio concentrations were used to confirm such associations. RESULTS: Epistasis analysis unveiled two significant single nucleotide polymorphism (SNP)-SNP interactions (false discovery rate (FDR) threshold 0.1), both interactions between C9 gene (rs261752) and IL6r gene (rs4240872, rs7514452). In a combined sample, the interactions were confirmed (p ≤ 10-5) and associated with amyloid accumulation within cognitively normal and AD spectrum groups. Voxel-based analysis corroborated initial findings. CSF biomarker (Aß1-42/p-tau) confirmed the genetic interaction. Additionally, rs4240872 and rs7514452 SNPs were shown to be associated with CSF and plasma concentrations of IL6r protein. CONCLUSIONS: Certain allele combinations involving IL6r and C9 genes are associated with Aß burden in the brain. Hypothesis-driven search for epistasis is a valuable strategy for investigating imaging endophenotypes in complex neurodegenerative diseases.


Assuntos
Doença de Alzheimer/imunologia , Amiloidose/imunologia , Disfunção Cognitiva/imunologia , Epistasia Genética/imunologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Amiloidose/diagnóstico , Amiloidose/genética , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Epistasia Genética/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Am J Hum Genet ; 97(5): 744-53, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26477546

RESUMO

Joubert syndrome (JBTS) is a primarily autosomal-recessive disorder characterized by a distinctive mid-hindbrain and cerebellar malformation, oculomotor apraxia, irregular breathing, developmental delay, and ataxia. JBTS is a genetically heterogeneous ciliopathy. We sought to characterize the genetic landscape associated with JBTS in the French Canadian (FC) population. We studied 43 FC JBTS subjects from 35 families by combining targeted and exome sequencing. We identified pathogenic (n = 32 families) or possibly pathogenic (n = 2 families) variants in genes previously associated with JBTS in all of these subjects, except for one. In the latter case, we found a homozygous splice-site mutation (c.735+2T>C) in CEP104. Interestingly, we identified two additional non-FC JBTS subjects with mutations in CEP104; one of these subjects harbors a maternally inherited nonsense mutation (c.496C>T [p.Arg166*]) and a de novo splice-site mutation (c.2572-2A>G), whereas the other bears a homozygous frameshift mutation (c.1328_1329insT [p.Tyr444fs*3]) in CEP104. Previous studies have shown that CEP104 moves from the mother centriole to the tip of the primary cilium during ciliogenesis. Knockdown of CEP104 in retinal pigment epithelial (RPE1) cells resulted in severe defects in ciliogenesis. These observations suggest that CEP104 acts early during cilia formation by regulating the conversion of the mother centriole into the cilia basal body. We conclude that disruption of CEP104 causes JBTS. Our study also reveals that the cause of JBTS has been elucidated in the great majority of our FC subjects (33/35 [94%] families), even though JBTS shows substantial locus and allelic heterogeneity in this population.


Assuntos
Cerebelo/anormalidades , Cílios/patologia , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Retina/anormalidades , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Canadá/epidemiologia , Cerebelo/patologia , Criança , Pré-Escolar , Cílios/metabolismo , Exoma/genética , Anormalidades do Olho/epidemiologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Lactente , Recém-Nascido , Doenças Renais Císticas/epidemiologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Masculino , Linhagem , Prognóstico , Retina/patologia , Adulto Jovem
11.
J Med Genet ; 52(7): 493-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25805808

RESUMO

BACKGROUND: Neural tube defects (NTDs) are very common and severe birth defects that are caused by failure of neural tube closure and that have a complex aetiology. Anencephaly and spina bifida are severe NTDs that affect reproductive fitness and suggest a role for de novo mutations (DNMs) in their aetiology. METHODS: We used whole-exome sequencing in 43 sporadic cases affected with myelomeningocele or anencephaly and their unaffected parents to identify DNMs in their exomes. RESULTS: We identified 42 coding DNMs in 25 cases, of which 6 were loss of function (LoF) showing a higher rate of LoF DNM in our cohort compared with control cohorts. Notably, we identified two protein-truncating DNMs in two independent cases in SHROOM3, previously associated with NTDs only in animal models. We have demonstrated a significant enrichment of LoF DNMs in this gene in NTDs compared with the gene specific DNM rate and to the DNM rate estimated from control cohorts. We also identified one nonsense DNM in PAX3 and two potentially causative missense DNMs in GRHL3 and PTPRS. CONCLUSIONS: Our study demonstrates an important role of LoF DNMs in the development of NTDs and strongly implicates SHROOM3 in its aetiology.


Assuntos
Proteínas dos Microfilamentos/genética , Defeitos do Tubo Neural/genética , Sequência de Bases , Estudos de Coortes , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Exoma/genética , Humanos , Dados de Sequência Molecular , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Fatores de Transcrição/genética
12.
Am J Hum Genet ; 91(2): 313-9, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22863194

RESUMO

Essential tremor (ET) is a common neurodegenerative disorder that is characterized by a postural or motion tremor. Despite a strong genetic basis, a gene with rare pathogenic mutations that cause ET has not yet been reported. We used exome sequencing to implement a simple approach to control for misdiagnosis of ET, as well as phenocopies involving sporadic and senile ET cases. We studied a large ET-affected family and identified a FUS p.Gln290(∗) mutation as the cause of ET in this family. Further screening of 270 ET cases identified two additional rare missense FUS variants. Functional considerations suggest that the pathogenic effects of ET-specific FUS mutations are different from the effects observed when FUS is mutated in amyotrophic lateral sclerosis cases; we have shown that the ET FUS nonsense mutation is degraded by the nonsense-mediated-decay pathway, whereas amyotrophic lateral sclerosis FUS mutant transcripts are not.


Assuntos
Tremor Essencial/genética , Exoma/genética , Predisposição Genética para Doença/genética , Proteína FUS de Ligação a RNA/genética , Sequência de Bases , Humanos , Dados de Sequência Molecular , Mutação Puntual/genética , Quebeque , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA