Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(47): 82352-82365, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137269

RESUMO

Functional significance of co-expressed erythropoietin (EPO) and its receptor (EPOR) in non-small cell lung cancer (NSCLC) had been under debate. In this study, co-overexpression of EPO/EPOR was confirmed to be positively associated with poor survival in NSCLC. The serum EPO in 14 of 35 enrolled NSCLC patients were found elevated significantly and decreased to normal level after tumor resection. With primary tumor cell culture and patient-derived tumor xenograft (PDX) mouse model, the EPO secretion from the tumors of these 14 patients was verified. Then, we proved the patient derived serum EPO was functionally active and had growth promotion effect in EPO/EPOR overexpressed but not in EPO/EPOR under-expressed NSCLC cells. We also illustrated EPO promoted NSCLC cell proliferation through an EPOR/Jak2/Stat5a/cyclinD1 pathway. In xenograft mouse model, we proved local application of EPO neutralizing antibody and short hairpin RNA (shRNA) against EPOR effectively inhibited the growth of EPO/EPOR overexpressed NSCLC cells and prolonged survivals of the mice. Finally, EPO/EPOR/Jak2/Stat5a/cyclinD1 signaling was found to be a mediator of hypoxia induced growth in EPO/EPOR overexpressed NSCLC. Our results illustrated a subgroup of NSCLC adapt to hypoxia through self-sustainable EPO/EPOR signaling and suggest local blockage of EPO/EPOR as potential therapeutic method in this distinct NSCLC population.

2.
J Biol Chem ; 286(16): 13869-78, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21345792

RESUMO

Hypoxia-inducible factors (HIFs) are stress-responsive transcriptional regulators of cellular and physiological processes involved in oxygen metabolism. Although much is understood about the molecular machinery that confers HIF responsiveness to oxygen, far less is known about HIF isoform-specific mechanisms of regulation, despite the fact that HIF-1 and HIF-2 exhibit distinct biological roles. We recently determined that the stress-responsive genetic regulator sirtuin 1 (Sirt1) selectively augments HIF-2 signaling during hypoxia. However, the mechanism by which Sirt1 maintains activity during hypoxia is unknown. In this report, we demonstrate that Sirt1 gene expression increases in a HIF-dependent manner during hypoxia in Hep3B and in HT1080 cells. Impairment of HIF signaling affects Sirt1 deacetylase activity as decreased HIF-1 signaling results in the appearance of acetylated HIF-2α, which is detected without pharmacological inhibition of Sirt1. We also find that Sirt1 augments HIF-2 mediated, but not HIF-1 mediated, transcriptional activation of the isolated Sirt1 promoter. These data in summary reveal a bidirectional link of HIF and Sirt1 signaling during hypoxia.


Assuntos
Regulação da Expressão Gênica , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia , Sirtuína 1/biossíntese , Acetilação , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Ativação Transcricional
3.
Science ; 324(5932): 1289-93, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19498162

RESUMO

To survive in hostile environments, organisms activate stress-responsive transcriptional regulators that coordinately increase production of protective factors. Hypoxia changes cellular metabolism and thus activates redox-sensitive as well as oxygen-dependent signal transducers. We demonstrate that Sirtuin 1 (Sirt1), a redox-sensing deacetylase, selectively stimulates activity of the transcription factor hypoxia-inducible factor 2 alpha (HIF-2alpha) during hypoxia. The effect of Sirt1 on HIF-2alpha required direct interaction of the proteins and intact deacetylase activity of Sirt1. Select lysine residues in HIF-2alpha that are acetylated during hypoxia confer repression of Sirt1 augmentation by small-molecule inhibitors. In cultured cells and mice, decreasing or increasing Sirt1 activity or levels affected expression of the HIF-2alpha target gene erythropoietin accordingly. Thus, Sirt1 promotes HIF-2 signaling during hypoxia and likely other environmental stresses.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular , Transdução de Sinais , Sirtuínas/metabolismo , Acetilação , Substituição de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Linhagem Celular Tumoral , Eritropoetina/genética , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Sirtuína 1 , Sirtuínas/genética
4.
Science ; 298(5602): 2385-7, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12446832

RESUMO

Neuronal PAS domain protein 2 (NPAS2) is a mammalian transcription factor that binds DNA as an obligate dimeric partner of BMAL1 and is implicated in the regulation of circadian rhythm. Here we show that both PAS domains of NPAS2 bind heme as a prosthetic group and that the heme status controls DNA binding in vitro. NPAS2-BMAL1 heterodimers, existing in either the apo (heme-free) or holo (heme-loaded) state, bound DNA avidly under favorably reducing ratios of the reduced and oxidized forms of nicotinamide adenine dinucleotide phosphate. Low micromolar concentrations of carbon monoxide inhibited the DNA binding activity of holo-NPAS2 but not that of apo-NPAS2. Upon exposure to carbon monoxide, inactive BMAL1 homodimers were formed at the expense of NPAS2-BMAL1 heterodimers. These results indicate that the heterodimerization of NPAS2, and presumably the expression of its target genes, are regulated by a gas through the heme-based sensor described here.


Assuntos
Monóxido de Carbono/metabolismo , DNA/metabolismo , Heme/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Monóxido de Carbono/farmacologia , Ritmo Circadiano , Dimerização , Sequências Hélice-Alça-Hélice , Heme/química , Ligantes , Mioglobina/metabolismo , NADP/metabolismo , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta
5.
Biochemistry ; 41(19): 6170-7, 2002 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-11994013

RESUMO

Phosphorylation of the transcription factor RmFixJ is the key step in the hypoxic induction of Sinorhizobium meliloti nitrogen fixation genes. Oxygen regulates this process by binding reversibly to RmFixL, a heme protein kinase whose deoxy form catalyzes the phosphoryl transfer from ATP to RmFixJ. Here we present the first quantitative measure of the extent by which various heme ligands inhibit the turnover of RmFixJ to phospho-RmFixJ. We also quantitate the inhibition by ligands of the reaction of RmFixL with ATP, in the absence of RmFixJ, to form phospho-RmFixL, i.e., the "autophosphorylation". Phospho-RmFixL formed from autophosphorylation will transfer its phosphoryl group to RmFixJ in an oxygen-independent "phosphotransfer." Here we show that the mode of substrate presentation, i.e., simultaneous versus sequential, influences the regulation of phosphoryl transfer by heme status. Inhibition factors for O(2), CO, NO, CN(-), and imidazole in the presence of RmFixJ are drastically different from the inhibition of autophosphorylation by the same ligands. Oxidation of the heme iron in unliganded RmFixL is known to have no effect on either of the sequential reactions; yet oxidation causes a 100-fold decrease in RmFixJ turnover when ATP and RmFixJ are presented simultaneously. The profound difference between the regulation of isolated RmFixL versus the complex of RmFixL with RmFixJ shows that interaction of a response regulator with its histidine-kinase partner need not be limited to the enzymatic regions of the histidine kinase, but can extend also to its sensory domain.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hemeproteínas/química , Hemeproteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Dimerização , Heme/química , Histidina Quinase , Cinética , Ligantes , Modelos Biológicos , Oxirredução , Oxigênio/metabolismo , Fosforilação , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Sinorhizobium meliloti/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA