Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 6199-6222, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921041

RESUMO

Human papillomavirus 16 (HPV 16) infection is associated with several types of cancer, such as head and neck, cervical, anal, and penile cancer. Its oncogenic potential is due to the ability of the E6 and E7 oncoproteins to promote alterations associated with cell transformation. HPV 16 E6 and E7 oncoproteins increase metabolic reprogramming, one of the hallmarks of cancer, by increasing the stability of hypoxia-induced factor 1 α (HIF-1α) and consequently increasing the expression levels of their target genes. In this report, by bioinformatic analysis, we show the possible effect of HPV 16 oncoproteins E6 and E7 on metabolic reprogramming in cancer through the E6-E7-PHD2-VHL-CUL2-ELOC-HIF-1α axis. We proposed that E6 and E7 interact with VHL, CUL2, and ELOC in forming the E3 ubiquitin ligase complex that ubiquitinates HIF-1α for degradation via the proteasome. Based on the information found in the databases, it is proposed that E6 interacts with VHL by blocking its interaction with HIF-1α. On the other hand, E7 interacts with CUL2 and ELOC, preventing their binding to VHL and RBX1, respectively. Consequently, HIF-1α is stabilized and binds with HIF-1ß to form the active HIF1 complex that binds to hypoxia response elements (HREs), allowing the expression of genes related to energy metabolism. In addition, we suggest an effect of E6 and E7 at the level of PHD2, VHL, CUL2, and ELOC gene expression. Here, we propose some miRNAs targeting PHD2, VHL, CUL2, and ELOC mRNAs. The effect of E6 and E7 may be the non-hydroxylation and non-ubiquitination of HIF-1α, which may regulate metabolic processes involved in metabolic reprogramming in cancer upon stabilization, non-degradation, and translocation to the nucleus.

2.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38203443

RESUMO

Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body mass index, and mutations in BRCA1/2 genes, among others. BC is classified into Luminal A, Luminal B, HER2-like, and Basal-like subtypes. These BC subtypes present differences in gene expression signatures, which can impact clinical behavior, treatment response, aggressiveness, metastasis, and survival of patients. Therefore, it is necessary to understand the epigenetic molecular mechanism of transcriptional regulation in BC, such as DNA demethylation. Ten-Eleven Translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) on DNA, which in turn inhibits or promotes the gene expression. Interestingly, the expression of TET enzymes as well as the levels of the 5hmC epigenetic mark are altered in several types of human cancers, including BC. Several studies have demonstrated that TET enzymes and 5hmC play a key role in the regulation of gene expression in BC, directly (dependent or independent of DNA de-methylation) or indirectly (via interaction with other proteins such as transcription factors). In this review, we describe our recent understanding of the regulatory and physiological function of the TET enzymes, as well as their potential role as biomarkers in BC biology.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteína BRCA1 , Proteína BRCA2 , Carcinogênese/genética , DNA
3.
Hematology ; 27(1): 476-487, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35413231

RESUMO

OBJECTIVE: The interplay between intrinsic and extrinsic elements involved in the physiology of hematopoietic cells is not completely understood. In the present study, we analyzed the transcriptional profiles of human cord blood-derived hematopoietic stem cells (HSCs), as well as myeloid (MPCs) and erythroid (EPCs) progenitors, and assessed their proliferation and expansion kinetics in vitro. METHODS: All cell populations were obtained by cell-sorting, and were cultured in liquid cultures supplemented with different cytokine combinations. Their gene expression profiles were determined by RNA microarrays right after cell-sorting, before culture. RESULTS: HSCs showed the highest proliferation and expansion capacities in culture, and were found to be more closely related, in transcriptional terms, to MPCs than to EPCs. This correlated with the fact that after 30 days, only cultures initiated with HSCs and MPCs were sustained. Expression of cell cycle and cell division-related genes was enriched in EPCs. Such cells showed significantly higher proliferation than MPCs, however, their expansion potential was reduced, so that cultures initiated with EPCs declined after 15 days and became exhausted by day 30. Proliferation and expansion of HSCs and EPCs were higher in the presence of a cytokine combination that favors erythropoiesis, whereas the growth of MPCs was higher under a cytokine combination that favors myelopoiesis. CONCLUSION: This study shows a correlation between the transcriptional profiles of HSCs, MPCs, and EPCs, and their respective in vitro growth under particular culture conditions. These results may be relevant in the development of ex vivo systems for the expansion of hematopoietic cells for clinical application.


Assuntos
Citocinas , Células-Tronco Hematopoéticas , Antígenos CD34/metabolismo , Proliferação de Células , Células Cultivadas , Citocinas/genética , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Transcriptoma
4.
Clin Epigenetics ; 14(1): 4, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991696

RESUMO

BACKGROUND: High-risk human papillomavirus (HR-HPV) infection is the main cause of cervical cancer, but additional alterations are necessary for its development. Abnormal DNA methylation has an important role in the origin and dissemination of cervical cancer and other human tumors. In this work, we analyzed the methylation of eight genes (AJAP1, CDH1, CDH13, MAGI2, MGMT, MYOD1, RASSF1A and SOX17) that participate in several biological processes for the maintenance of cell normality. We analyzed DNA methylation by methylation-specific PCR (MSP) and HPV infection using the INNO­LiPA genotyping kit in 59 samples diagnostic of normal cervical tissue (non-SIL), 107 low-grade squamous intraepithelial lesions (LSILs), 29 high-grade squamous intraepithelial lesions (HSILs) and 51 cervical cancers (CCs). RESULTS: We found that all samples of LSIL, HSIL, and CC were HPV-positive, and the genotypes with higher frequencies were 16, 18, 51 and 56. In general, the genes analyzed displayed a significant tendency toward an increase in methylation levels according to increasing cervical lesion severity, except for the CDH13 gene. High CpG island methylator phenotype (CIMP) was associated with a 50.6-fold (95% CI 4.72-2267.3)-increased risk of HSIL and a 122-fold risk of CC (95% CI 10.04-5349.7). CONCLUSIONS: We found that CIMP high was significantly associated with HSIL and CC risk. These results could indicate that CIMP together with HR-HPV infection and other factors participates in the development of HSIL and CC.


Assuntos
Ilhas de CpG/genética , Metilação de DNA/genética , Predisposição Genética para Doença , Fenótipo , Lesões Intraepiteliais Escamosas Cervicais/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/fisiopatologia , Adulto , Linhagem Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Queratinócitos , México , Pessoa de Meia-Idade , Fatores de Risco
5.
Pathogens ; 10(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809480

RESUMO

Metabolic reprogramming is considered one of the hallmarks in cancer and is characterized by increased glycolysis and lactate production, even in the presence of oxygen, which leads the cancer cells to a process called "aerobic glycolysis" or "Warburg effect". The E6 and E7 oncoproteins of human papillomavirus 16 (HPV 16) favor the Warburg effect through their interaction with a molecule that regulates cellular metabolism, such as p53, retinoblastoma protein (pRb), c-Myc, and hypoxia inducible factor 1α (HIF-1α). Besides, the impact of the E6 and E7 variants of HPV 16 on metabolic reprogramming through proteins such as HIF-1α may be related to their oncogenicity by favoring cellular metabolism modifications to satisfy the energy demands necessary for viral persistence and cancer development. This review will discuss the role of HPV 16 E6 and E7 variants in metabolic reprogramming and their contribution to developing and preserving the malignant phenotype of cancers associated with HPV 16 infection.

6.
Stem Cells Transl Med ; 7(8): 602-614, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29701016

RESUMO

To date, different experimental strategies have been developed for the ex vivo expansion of human hematopoietic stem (HSCs) and progenitor (HPCs) cells. This has resulted in significant advances on the use of such expanded cells in transplantation settings. To this day, however, it is still unclear to what extent those stem and progenitor cells generated in vitro retain the functional and genomic integrity of their freshly isolated counterparts. In trying to contribute to the solving of this issue, in the present study we have selected and purified three different hematopoietic cell populations: HSCs (CD34+ CD38- CD45RA- CD71- Lin- cells), myeloid progenitor cells (CD34+ CD38+ CD45RA+ CD71- Lin- cells), and erythroid progenitor cells (CD34+ CD38+ CD45RA- CD71+ Lin- cells), obtained directly from fresh human umbilical cord blood (UCB) units or generated in vitro under particular culture conditions. We, then, compared their functional integrity in vitro and their gene expression profiles. Our results indicate that in spite of being immunophenotipically similar, fresh and in vitro generated cells showed significant differences, both in functional and genetic terms. As compared to their fresh counterparts, those HSCs generated in our culture system showed a deficient content of long-term culture-initiating cells, and a marked differentiation bias toward the myeloid lineage. In addition, in vitro generated HSCs and HPCs showed a limited expansion potential. Such functional alterations correlated with differences in their gene expression profiles. These observations are relevant in terms of HSC biology and may have implications in UCB expansion and transplantation. Stem Cells Translational Medicine 2018;7:602-614.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos CD34/genética , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Células-Tronco/citologia
7.
Int J Biochem Cell Biol ; 91(Pt A): 29-36, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28855121

RESUMO

We investigated the properties of tubulin present in the sedimentable fraction ("Sed-tub") of human erythrocytes, and tracked the location and organization of tubulin in various types of cells during the process of hematopoietic/erythroid differentiation. Sed-tub was sensitive to taxol/nocodazole (drugs that modify microtubule assembly/disassembly), but was organized as part of a protein network rather than in typical microtubule form. This network had a non-uniform "connected-ring" structure, with tubulin localized in the connection areas and associated with other proteins. When tubulin was eliminated from Sed-tub fraction, this connected-ring structure disappeared. Spectrin, a major protein component in Sed-tub fraction, formed a complex with tubulin. During hematopoietic differentiation, tubulin shifts from typical microtubule structure (in pro-erythroblasts) to a disorganized structure (in later stages), and is retained in reticulocytes following enucleation. Thus, tubulin is not completely lost when erythrocytes mature; it continues to play a structural role in the Sed-tub fraction.


Assuntos
Eritrócitos/citologia , Eritrócitos/metabolismo , Hematopoese , Tubulina (Proteína)/metabolismo , Adulto , Sedimentação Sanguínea/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Hematopoese/efeitos dos fármacos , Humanos , Masculino , Nocodazol/farmacologia , Paclitaxel/farmacologia , Espectrina/metabolismo , Tubulina (Proteína)/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA