Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 139(6): 2072-2082.e5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20826154

RESUMO

BACKGROUND & AIMS: CD166 (also called activated leukocyte cell adhesion molecule [ALCAM]) is a marker of colorectal cancer (CRC) stem cells; it is expressed by aggressive tumors. Although the presence of CD166 at the tumor cell surface has been correlated with shortened survival, little is known about its function and expression in normal intestinal epithelia. METHODS: We characterized the expression pattern of CD166 in normal intestinal tissue samples from humans and mice using immunohistochemisty, flow cytometry, and quantitative reverse-transcriptase polymerase chain reaction. Human and mouse intestinal tumors were also analyzed. RESULTS: CD166 was expressed on the surface of epithelial cells within the stem cell niche and along the length of the intestine; expression was conserved across species. In the small intestine, CD166 was observed on crypt-based Paneth cells and intervening crypt-based columnar cells (putative stem cells). A subset of CD166-positive, crypt-based columnar cells coexpressed the stem cell markers Lgr5, Musashi-1, or Dcamkl-1. CD166 was located in the cytoplasm and at the surface of cells within human CRC tumors. CD166-positive cells were also detected in benign adenomas in mice; rare cells coexpressed CD166 and CD44 or epithelial-specific antigen. CONCLUSIONS: CD166 is highly expressed within the endogenous intestinal stem cell niche. CD166-positive cells appear at multiple stages of intestinal carcinoma progression, including benign and metastatic tumors. Further studies should investigate the function of CD166 in stem cells and the stem cell niche, which might have implications for normal intestinal homeostasis. CD166 has potential as a therapeutic target for CRC.


Assuntos
Adenocarcinoma/metabolismo , Antígenos CD/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Neoplasias Colorretais/metabolismo , Células Epiteliais/metabolismo , Proteínas Fetais/metabolismo , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Adenocarcinoma/secundário , Animais , Biomarcadores Tumorais/metabolismo , Biópsia , Colo/citologia , Colo/metabolismo , Neoplasias Colorretais/patologia , Células Epiteliais/citologia , Homeostase/fisiologia , Humanos , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células-Tronco/citologia
2.
BMC Gastroenterol ; 8: 57, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19055726

RESUMO

BACKGROUND: The canonical Wnt signaling pathway is a known regulator of cell proliferation during development and maintenance of the intestinal epithelium. Perturbations in this pathway lead to aberrant epithelial proliferation and intestinal cancer. In the mature intestine, proliferation is confined to the relatively quiescent stem cells and the rapidly cycling transient-amplifying cells in the intestinal crypts. Although the Wnt signal is believed to regulate all proliferating intestinal cells, surprisingly, this has not been thoroughly demonstrated. This important determination has implications on intestinal function, especially during epithelial expansion and regeneration, and warrants an extensive characterization of Wnt-activated cells. METHODS: To identify intestinal epithelial cells that actively receive a Wnt signal, we analyzed intestinal Wnt-reporter expression patterns in two different mouse lines using immunohistochemistry, enzymatic activity, in situ hybridization and qRT-PCR, then corroborated results with reporter-independent analyses. Wnt-receiving cells were further characterized for co-expression of proliferation markers, putative stem cell markers and cellular differentiation markers using an immunohistochemical approach. Finally, to demonstrate that Wnt-reporter mice have utility in detecting perturbations in intestinal Wnt signaling, the reporter response to gamma-irradiation was examined. RESULTS: Wnt-activated cells were primarily restricted to the base of the small intestinal and colonic crypts, and were highest in numbers in the proximal small intestine, decreasing in frequency in a gradient toward the large intestine. Interestingly, the majority of the Wnt-reporter-expressing cells did not overlap with the transient-amplifying cell population. Further, while Wnt-activated cells expressed the putative stem cell marker Musashi-1, they did not co-express DCAMKL-1 or cell differentiation markers. Finally, gamma-irradiation stimulated an increase in Wnt-activated intestinal crypt cells. CONCLUSION: We show, for the first time, detailed characterization of the intestine from Wnt-reporter mice. Further, our data show that the majority of Wnt-receiving cells reside in the stem cell niche of the crypt base and do not extend into the proliferative transient-amplifying cell population. We also show that the Wnt-reporter mice can be used to detect changes in intestinal epithelial Wnt signaling upon physiologic injury. Our findings have an important impact on understanding the regulation of the intestinal stem cell hierarchy during homeostasis and in disease states.


Assuntos
Perfilação da Expressão Gênica , Genes Reporter/genética , Homeostase/genética , Mucosa Intestinal/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Animais , Proliferação de Células , Colo/citologia , Colo/metabolismo , Colo/efeitos da radiação , Raios gama , Regulação da Expressão Gênica/efeitos da radiação , Homeostase/fisiologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Intestino Delgado/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA