Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 2(8): 100360, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467244

RESUMO

Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of maternal UBE3A, a ubiquitin protein ligase E3A. Here, we study neurons derived from patients with AS and neurotypical individuals, and reciprocally modulate UBE3A using antisense oligonucleotides. Unbiased proteomics reveal proteins that are regulated by UBE3A in a disease-specific manner, including PEG10, a retrotransposon-derived GAG protein. PEG10 protein increase, but not RNA, is dependent on UBE3A and proteasome function. PEG10 binds to both RNA and ataxia-associated proteins (ATXN2 and ATXN10), localizes to stress granules, and is secreted in extracellular vesicles, modulating vesicle content. Rescue of AS patient-derived neurons by UBE3A reinstatement or PEG10 reduction reveals similarity in transcriptome changes. Overexpression of PEG10 during mouse brain development alters neuronal migration, suggesting that it can affect brain development. These findings imply that PEG10 is a secreted human UBE3A target involved in AS pathophysiology.


Assuntos
Síndrome de Angelman/metabolismo , Síndrome de Angelman/fisiopatologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a DNA/metabolismo , Produtos do Gene gag/química , Proteínas de Ligação a RNA/metabolismo , Retroviridae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Movimento Celular , Pré-Escolar , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Retroelementos/genética , Grânulos de Estresse/metabolismo , Grânulos de Estresse/ultraestrutura , Transcriptoma/genética
2.
Microb Cell ; 5(3): 150-157, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29487861

RESUMO

Ubiquitination is a posttranslational protein modification that regulates most aspects of cellular life. The sheer number of ubiquitination enzymes that are present in a mammalian cell, over 700 in total, has thus far hampered the analysis of distinct protein ubiquitination cascades in a cellular context. To overcome this complexity we have developed a versatile vector system that allows the reconstitution of specific ubiquitination cascades in the model eukaryote Saccharomyces cerevisae (baker's yeast). The vector system consists of 32 modular yeast shuttle plasmids allowing inducible or constitutive expression of up to four proteins of interest in a single cell. To demonstrate the validity of the system, we show that co-expression in yeast of the mammalian HECT type E3 ubiquitin ligase E6AP (E6-Associated Protein) and a model substrate faithfully recapitulates E6AP-dependent substrate ubiquitination and degradation. In addition, we show that the endogenous sumoylation pathway of S. cerevisiae can specifically sumoylate mouse PML (Promyelocytic leukemia protein). In conclusion, the yeast vector system described in this paper provides a versatile tool to study complex post-translational modifications in a cellular setting.

3.
Circ Res ; 118(3): 410-9, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26666640

RESUMO

RATIONALE: The low-density lipoprotein (LDL) receptor (LDLR) is a central determinant of circulating LDL-cholesterol and as such subject to tight regulation. Recent studies and genetic evidence implicate the inducible degrader of the LDLR (IDOL) as a regulator of LDLR abundance and of circulating levels of LDL-cholesterol in humans. Acting as an E3-ubiquitin ligase, IDOL promotes ubiquitylation and subsequent lysosomal degradation of the LDLR. Consequently, inhibition of IDOL-mediated degradation of the LDLR represents a potential strategy to increase hepatic LDL-cholesterol clearance. OBJECTIVE: To establish whether deubiquitylases counteract IDOL-mediated ubiquitylation and degradation of the LDLR. METHODS AND RESULTS: Using a genetic screening approach, we identify the ubiquitin-specific protease 2 (USP2) as a post-transcriptional regulator of IDOL-mediated LDLR degradation. We demonstrate that both USP2 isoforms, USP2-69 and USP2-45, interact with IDOL and promote its deubiquitylation. IDOL deubiquitylation requires USP2 enzymatic activity and leads to a marked stabilization of IDOL protein. Paradoxically, this also markedly attenuates IDOL-mediated degradation of the LDLR and the ability of IDOL to limit LDL uptake into cells. Conversely, loss of USP2 reduces LDLR protein in an IDOL-dependent manner and limits LDL uptake. We identify a tri-partite complex encompassing IDOL, USP2, and LDLR and demonstrate that in this context USP2 promotes deubiquitylation of the LDLR and prevents its degradation. CONCLUSIONS: Our findings identify USP2 as a novel regulator of lipoprotein clearance owing to its ability to control ubiquitylation-dependent degradation of the LDLR by IDOL.


Assuntos
LDL-Colesterol/metabolismo , Endopeptidases/metabolismo , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Endopeptidases/genética , Estabilidade Enzimática , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Camundongos Knockout , Complexos Multienzimáticos , Ligação Proteica , Proteólise , Interferência de RNA , Receptores de LDL/genética , Transfecção , Ubiquitina Tiolesterase , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
PLoS One ; 10(6): e0126940, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039593

RESUMO

The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C. albicans: glutathione reductase (Glr1) and the S-nitrosoglutathione reductase (GSNOR), Fdh3. We show that the NADPH-dependent Glr1 recycles GSSG to GSH, is induced in response to oxidative stress and is required for resistance to macrophage killing. GLR1 deletion increases the sensitivity of C. albicans cells to H2O2, but not to formaldehyde or NO. In contrast, Fdh3 detoxifies GSNO to GSSG and NH3, and FDH3 inactivation delays NO adaptation and increases NO sensitivity. C. albicans fdh3⎔ cells are also sensitive to formaldehyde, suggesting that Fdh3 also contributes to formaldehyde detoxification. FDH3 is induced in response to nitrosative, oxidative and formaldehyde stress, and fdh3Δ cells are more sensitive to killing by macrophages. Both Glr1 and Fdh3 contribute to virulence in the Galleria mellonella and mouse models of systemic infection. We conclude that Glr1 and Fdh3 play differential roles during the adaptation of C. albicans cells to oxidative, nitrosative and formaldehyde stress, and hence during the colonisation of the host. Our findings emphasise the importance of the glutathione system and the maintenance of intracellular redox homeostasis in this major pathogen.


Assuntos
Adaptação Fisiológica , Aldeído Oxirredutases , Candida albicans , Proteínas Fúngicas , Glutationa Redutase , Estresse Oxidativo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Candida albicans/enzimologia , Candida albicans/genética , Candida albicans/patogenicidade , Candidíase/enzimologia , Candidíase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Óxido Nítrico/metabolismo
5.
Sci Rep ; 3: 2212, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23896733

RESUMO

The ubiquitin-conjugating enzyme Pex4p together with its binding partner, the peroxisomal membrane protein Pex22p, co-ordinates cysteine-dependent ubiquitination of the cycling receptor protein Pex5p. Unusually for an ubiquitin-conjugating enzyme, Saccharomyces cerevisiae Pex4p can form a disulphide bond between the cysteine residues at positions 105 and 146. We found that mutating the disulphide forming cysteine residues in Pex4p to serines does not disturb the secondary structure of the protein but does reduce the in vitro activity of Pex4p. From the crystal structure of Pex4p C105S, C146S in complex with the soluble domain of Pex22p, we observe a narrowing of the active site cleft, caused by loss of the disulphide bond. This modification of the active site microenvironment is likely to restrict access of ubiquitin to the active site cysteine, modulating Pex4p activity. Finally, based on sequence and structural alignments, we have identified other ubiquitin-conjugating enzymes that may contain disulphide bonds.


Assuntos
Dissulfetos/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ativação Enzimática , Modelos Moleculares , Oxirredução , Peroxinas , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Soluções , Ubiquitinação
6.
J Biol Chem ; 282(31): 22534-43, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17550898

RESUMO

The peroxisomal protein import receptor Pex5p is modified by ubiquitin, both in an Ubc4p-dependent and -independent manner. Here we show that the two types of ubiquitination target different residues in the NH(2)-terminal region of Pex5p and we identify Pex4p (Ubc10p) as the ubiquitin-conjugating enzyme required for Ubc4p-independent ubiquitination. Whereas Ubc4p-dependent ubiquitination occurs on two lysine residues, Pex4p-dependent ubiquitination neither requires lysine residues nor the NH(2)-terminal alpha-NH(2) group. Instead, a conserved cysteine residue appears to be essential for both the Pex4p-dependent ubiquitination and the overall function of Pex5p. In addition, we show that this form of ubiquitinated Pex5p is susceptible to the reducing agent beta-mercaptoethanol, a compound that is unable to break ubiquitin-NH(2) group linkages. Together, our results strongly suggest that Pex4p-dependent ubiquitination of Pex5p occurs on a cysteine residue.


Assuntos
Cisteína/química , Proteínas de Membrana Transportadoras/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Humanos , Lisina/química , Mercaptoetanol/química , Dados de Sequência Molecular , Peroxinas , Receptor 1 de Sinal de Orientação para Peroxissomos , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
7.
Yeast ; 24(4): 279-88, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17315266

RESUMO

During sporulation in the ascomyceteous fungus Schizosaccharomyces pombe, diploid cells undergo differentiation into asci containing four haploid ascospores, which are highly resistant to environmental stresses. Although the morphogenetic processes involved in ascospore formation have been studied extensively, little is known about the molecular mechanism that ensures the release of mature ascospores from the ascus, allowing their dispersal into the environment. Recently, we identified Agn2p as the paralogue of the characterized endo-(1,3)-alpha-glucanase Agn1p, and observed that asci deleted for agn2 are defective in ascospore dispersal. Here, we focus on the cellular and biochemical functions of Agn2p. By placing agn2 under the control of an inducible promoter, we show that expression of agn2 is required for the efficient release of ascospores from their asci. Furthermore, we characterize the enzyme activity of purified recombinant Agn2p and show that Agn2p, like Agn1p, is an endo-(1,3)-alpha-glucanase that produces predominantly (1,3)-alpha-glucan pentasaccharides. Finally, we demonstrate that exogenous addition of purified Agn2p liberated the ascospores from asci deleted for agn2. We propose that Agn2p participates in the endolysis of the ascus wall by hydrolysing its (1,3)-alpha-glucan, thereby assisting in the release of ascospores.


Assuntos
Parede Celular/metabolismo , Glicosídeo Hidrolases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Esporos Fúngicos/fisiologia , Parede Celular/química , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases/genética , Hidrólise , Mutação , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Especificidade por Substrato
8.
Mol Cell ; 10(5): 1007-17, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12453410

RESUMO

While the function of most small signaling domains is confined to binary ligand interactions, the peroxisomal Pex13p SH3 domain has the unique capacity of binding to two different ligands, Pex5p and Pex14p. We have used this domain as a model to decipher its structurally independent ligand binding sites. By the combined use of X-ray crystallography, NMR spectroscopy, and circular dichroism, we show that the two ligands bind in unrelated conformations to patches located at opposite surfaces of this SH3 domain. Mutations in the Pex13p SH3 domain that abolish interactions within the Pex13p-Pex5p interface specifically impair PTS1-dependent protein import into yeast peroxisomes.


Assuntos
Proteínas de Membrana/química , Peroxissomos/química , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Domínios de Homologia de src , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/química , Dicroísmo Circular , Cristalografia por Raios X , Escherichia coli/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Proteínas de Membrana Transportadoras , Microscopia de Fluorescência , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/química , Peroxinas , Receptor 1 de Sinal de Orientação para Peroxissomos , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA