Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1029356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389708

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system with no cure yet. Here, we report genetic engineering of hematopoietic stem cells (HSCs) to express myelin oligodendrocyte glycoprotein (MOG), specifically in platelets, as a means of intervention to induce immune tolerance in experimental autoimmune encephalomyelitis (EAE), the mouse model of MS. The platelet-specific αIIb promoter was used to drive either a full-length or truncated MOG expression cassette. Platelet-MOG expression was introduced by lentivirus transduction of HSCs followed by transplantation. MOG protein was detected on the cell surface of platelets only in full-length MOG-transduced recipients, but MOG was detected in transmembrane-domain-less MOG1-157-transduced platelets intracellularly. We found that targeting MOG expression to platelets could prevent EAE development and attenuate disease severity, including the loss of bladder control in transduced recipients. Elimination of the transmembrane domains of MOG significantly enhanced the clinical efficacy in preventing the onset and development of the disease and induced CD4+Foxp3+ Treg cells in the EAE model. Together, our data demonstrated that targeting transmembrane domain-deleted MOG expression to platelets is an effective strategy to induce immune tolerance in EAE, which could be a promising approach for the treatment of patients with MS autoimmune disease.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Glicoproteína Mielina-Oligodendrócito , Tolerância Imunológica , Sistema Nervoso Central
2.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897821

RESUMO

Macrophages are present in every tissue in the body and play essential roles in homeostasis and host defense against microorganisms. Some tissue macrophages derive from the yolk sac/fetal liver that populate tissues for life. Other tissue macrophages derive from monocytes that differentiate in the bone marrow and circulate through tissues via the blood and lymphatics. Circulating monocytes are very plastic and differentiate into macrophages with specialized functions upon entering tissues. Specialized monocyte/macrophage subsets have been difficult to differentiate based on cell surface markers. Here, using a combination of "pan" monocyte/macrophage markers and flow cytometry, we asked whether myeloperoxidase (MPO) could be used as a marker of pro-inflammatory monocyte/macrophage subsets. MPO is of interest because of its potent microbicidal activity. In wild-type SPF housed mice, we found that MPO+ monocytes/macrophages were present in peripheral blood, spleen, small and large intestines, and mesenteric lymph nodes, but not the central nervous system. Only monocytes/macrophages that expressed cell surface F4/80 and/or Ly6C co-expressed MPO with the highest expression in F4/80HiLy6CHi subsets regardless of tissue. These cumulative data indicate that MPO expression can be used as an additional marker to differentiate between monocyte/macrophage subsets with pro-inflammatory and microbicidal activity in a variety of tissues.


Assuntos
Monócitos , Peroxidase , Animais , Biomarcadores/metabolismo , Contagem de Leucócitos , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo , Peroxidase/metabolismo
3.
Immunohorizons ; 6(7): 497-506, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35868840

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory autoimmune disease of the CNS that resembles multiple sclerosis and provides a useful animal model for the evaluation of mechanisms of action for potential immunomodulatory therapies. We have previously shown that oral adrenocorticotropic hormone (ACTH) decreased IL-17 in the gut lamina propria and the spleen and increased CD4+ Foxp3+ T regulatory cells and IL-10 in the spleen during EAE in the C57BL/6 mouse. However, we did not investigate the specific cellular alterations of proinflammatory and anti-inflammatory factors in the CNS. The aim was to determine if oral ACTH would have a similar clinical effect on inflammatory cytokines in the gut and define specific cellular effects in the CNS in an alternative strain of mice. SJL/J mice were immunized with proteolipid protein peptide 138-151 and gavaged with scrambled ACTH (scrambled α-melanocyte-stimulating hormone) or ACTH 1-39 during ongoing disease. Ingested (oral) ACTH attenuated ongoing clinical EAE disease, decreased IL-6 production, and increased T regulatory cells in the lamina propria and decreased CD4+ and γδ IL-17 production in the CNS. Ingested ACTH attenuated EAE clinical disease by decreasing IL-6 in the gut-associated lymphoid tissue and decreasing IL-17 in the CNS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Hormônio Adrenocorticotrópico , Animais , Sistema Nervoso Central , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Interleucina-17 , Interleucina-6 , Camundongos , Camundongos Endogâmicos C57BL
4.
Methods Mol Biol ; 2270: 217-231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33479901

RESUMO

B-cell IgD Low (BDL) B cells have been shown to promote immunological tolerance by inducing proliferation of CD4+Foxp3+ T-regulatory cells (Treg) in a glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL, Tnfsf18)-dependent manner. BDL cells constitute a small subset of splenic B lymphocytes that, in mice, are characterized by the B220+IgMintCD21intCD23+CD93-IgDlow/- cell surface expression profile. In this chapter, we show the flow cytometry gating strategy developed to identify and purify BDL. In addition, we describe an in vitro assay and two in vivo assays to assess BDL regulatory activity by quantitating Treg expansion/proliferation and indicate how they can be used in mouse models of disease. Collectively, these methods are useful to track and quantitate BDL and Treg numbers and assess their regulatory activity in inflammatory disease models.


Assuntos
Linfócitos B Reguladores/imunologia , Citometria de Fluxo/métodos , Imunoglobulina D/isolamento & purificação , Animais , Linfócitos B Reguladores/metabolismo , Linfócitos T CD4-Positivos/imunologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Tolerância Imunológica , Imunoglobulina D/imunologia , Imunoglobulina D/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores do Fator de Necrose Tumoral/metabolismo , Baço/citologia , Linfócitos T Reguladores/imunologia
5.
J Mol Biol ; 433(1): 166584, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32615130

RESUMO

It is now appreciated that in addition to their role in humoral immunity, B cells also exert regulatory mechanisms that lead to attenuation of inflammatory responses. The concept of B-cell regulation became well recognized when mice deficient in B cells due to genetic disruption were shown to be refractory to recovery from the signs of experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis. This seminal study spurred the search for B-cell regulatory phenotypes and mechanisms of action. Our approach was to utilize differential B-cell depletion with anti-CD20 to retain B cells whose presence were required to achieve EAE recovery. Utilizing flow cytometry, adoptive cell therapy and genetic approaches, we discovered a new B-cell subset that, upon adoptive transfer into B cell-deficient mice, was sufficient to promote EAE recovery. This B-cell subset is IgM+, but due to low/negative IgD cell surface expression, it was named B-cell IgD low (BDL). Mechanistically, we found that in the absence of BDL, the absolute cell number of CD4+Foxp3+ T regulatory cells (Treg), essential for immune tolerance, was significantly reduced. Furthermore, we found that BDL expression of glucocorticoid-induced tumor necrosis factor ligand (GITRL) was essential for induction of Treg proliferation and maintenance of their homeostasis. Thus, we have identified a new B-cell subset that is critical for immunological tolerance through interactions with Treg.


Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Tolerância Imunológica , Imunoglobulina D/imunologia , Animais , Autoimunidade , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Glucocorticoides/farmacologia , Homeostase , Humanos , Imunomodulação , Depleção Linfocítica , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
6.
Front Immunol ; 12: 787464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987513

RESUMO

Regulatory B cell or "Breg" is a broad term that represents the anti-inflammatory activity of B cells, but does not describe their individual phenotypes, specific mechanisms of regulation or relevant disease contexts. Thus, given the variety of B cell regulatory mechanisms reported in human disease and their animal models, a more thorough and comprehensive identification strategy is needed for tracking and comparing B cell subsets between research groups and in clinical settings. This review summarizes the discovery process and mechanism of action for well-defined regulatory B cell subsets with an emphasis on the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis. We discuss the importance of conducting thorough B cell phenotyping along with mechanistic studies prior to defining a particular subset of B cells as Breg. Since virtually all B cell subsets can exert regulatory activity, it is timely for their definitive identification across studies.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B Reguladores/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Animais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B Reguladores/metabolismo , Encefalomielite Autoimune Experimental/sangue , Humanos , Imunofenotipagem , Esclerose Múltipla/sangue
8.
J Neurol Sci ; 409: 116602, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812846

RESUMO

BACKGROUND: EAE is an inflammatory autoimmune process of the CNS that resembles multiple sclerosis (MS) and provides a useful animal model for the evaluation of mechanisms of action for potential immunomodulatory therapies. Oral ACTH (adrenocorticotropic hormone) can decrease clinical disease, IL-17 and Th1-like encephalitogenic IFN-γ secretion and increase Treg frequency. The mechanism by which oral ACTH decreases inflammatory proteins and increases Treg cell frequencies is unknown. OBJECTIVE: IL-6 is a pivotal cytokine in the gut that determines the relative frequencies of Th17 vs Treg cells. We examined whether oral ACTH inhibited IL-6 in the gut associated lymphoid tissue (GALT) in EAE. DESIGN/METHODS: B6 mice were immunized with MOG peptide 35-55 and gavaged with scrambled ACTH (scrambled melanocyte stimulating hormone [scrambled α-MSH]) or ACTH 1-39 during ongoing disease. RESULTS: Ingested (oral) ACTH inhibited ongoing clinical disease. In the lamina propria (LP) immune compartment, there were significantly less CD11b + IL-6 and IL-17 producing lymphocytes from ACTH fed mice compared to s-MSH fed mice. There was also a decrease in the frequency of IL-17 and IFN-γ producing spleen cells and an increase in CD4 + FoxP3+ Treg cell frequency in ACTH fed mice compared to s-MSH fed control spleens. There were less IFN-γ producing CNS lymphocytes in ACTH fed mice compared to s-MSH fed control CNS. CONCLUSIONS: Ingested ACTH inhibits EAE clinical disease by inhibiting IL-6 in the GALT.


Assuntos
Hormônio Adrenocorticotrópico/administração & dosagem , Encefalomielite Autoimune Experimental/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/biossíntese , Mucosa/metabolismo , Células Th17/metabolismo , Administração Oral , Sequência de Aminoácidos , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/prevenção & controle , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/efeitos dos fármacos , Células Th17/efeitos dos fármacos
9.
Nat Commun ; 10(1): 190, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643147

RESUMO

A number of different B cell subsets have been shown to exhibit regulatory activity using a variety of mechanisms to attenuate inflammatory diseases. Here we show, using anti-CD20-mediated partial B cell depletion in mice, that a population of mature B cells distinguishable by IgDlow/- expression maintains tolerance by, at least in part, promoting CD4+Foxp3+ regulatory T cell homeostatic expansion via glucocorticoid-induced tumor necrosis factor receptor ligand, or GITRL. Cell surface phenotyping, transcriptome analysis and developmental study data show that B cells expressing IgD at a low level (BDL) are a novel population of mature B cells that emerge in the spleen from the transitional-2 stage paralleling the differentiation of follicular B cells. The cell surface phenotype and regulatory function of BDL are highly suggestive that they are a new B cell subset. Human splenic and peripheral blood IgDlow/- B cells also exhibit BDL regulatory activity, rendering them of therapeutic interest.


Assuntos
Subpopulações de Linfócitos B/imunologia , Dermatite de Contato/imunologia , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Tolerância Imunológica , Linfócitos T Reguladores/imunologia , Animais , Subpopulações de Linfócitos B/metabolismo , Separação Celular/métodos , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Imunoglobulina D/metabolismo , Leucócitos Mononucleares , Camundongos , Camundongos Endogâmicos C57BL , Oxazolona/imunologia , Baço/citologia , Baço/crescimento & desenvolvimento , Baço/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Necrose Tumoral/imunologia , Fatores de Necrose Tumoral/metabolismo
10.
PLoS One ; 10(8): e0137314, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26323020

RESUMO

The signaling lymphocyte activation molecule (SLAM) family plays important roles in adaptive immune responses. Herein, we evaluated whether the SLAM family member 2B4 (CD244) plays a role in immune cell development, homeostasis and antibody responses. We found that the splenic cellularity in Cd244-/- mice was significantly reduced due to a reduction in both CD4 T cells and follicular (Fo) B cells; whereas, the number of peritoneal cavity B cells was increased. These findings led us to examine whether 2B4 modulates B cell immune responses. When we examined T-dependent B cell responses, while there was no difference in the kinetics or magnitude of the antigen-specific IgM and IgG1 antibody response there was a reduction in bone marrow (BM) memory, but not plasma cells in Cd244-/- mice. When we evaluated T-independent immune responses, we found that antigen-specific IgM and IgG3 were elevated in the serum following immunization. These data indicate that 2B4 dampens T-independent B cell responses due to a reduction in peritoneal cavity B cells, but has minimal impact on T-dependent B cell responses.


Assuntos
Formação de Anticorpos/imunologia , Antígenos CD/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Cavidade Peritoneal/fisiologia , Receptores Imunológicos/imunologia , Animais , Medula Óssea/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Família de Moléculas de Sinalização da Ativação Linfocitária
11.
J Immunol ; 195(7): 3071-85, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324769

RESUMO

It is clear that IL-10 plays an essential role in maintaining homeostasis in the gut in response to the microbiome. However, it is unknown whether IL-10 also facilitates immune homeostasis at distal sites. To address this question, we asked whether splenic immune populations were altered in IL-10-deficient (Il10(-/-)) mice in which differences in animal husbandry history were associated with susceptibility to spontaneous enterocolitis that is microbiome dependent. The susceptible mice exhibited a significant increase in splenic macrophages, neutrophils, and marginal zone (MZ) B cells that was inhibited by IL-10 signaling in myeloid, but not B cells. The increase in macrophages was due to increased proliferation that correlated with a subsequent enhancement in MZ B cell differentiation. Cohousing and antibiotic treatment studies suggested that the alteration in immune homeostasis in the spleen was microbiome dependent. The 16S rRNA sequencing revealed that susceptible mice harbored a different microbiome with a significant increase in the abundance of the bacterial genus Helicobacter. The introduction of Helicobacter hepaticus to the gut of nonsusceptible mice was sufficient to drive macrophage expansion and MZ B cell development. Given that myeloid cells and MZ B cells are part of the first line of defense against blood-borne pathogens, their increase following a breach in the gut epithelial barrier would be protective. Thus, IL-10 is an essential gatekeeper that maintains immune homeostasis at distal sites that can become functionally imbalanced upon the introduction of specific pathogenic bacteria to the intestinal track.


Assuntos
Linfócitos B/imunologia , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/imunologia , Interleucina-10/genética , Animais , Linfócitos B/citologia , Sequência de Bases , Contagem de Células , Diferenciação Celular/imunologia , Proliferação de Células , DNA Bacteriano/genética , Enterocolite/imunologia , Enterocolite/microbiologia , Infecções por Helicobacter/microbiologia , Interleucina-10/imunologia , Ativação Linfocitária/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Transdução de Sinais/imunologia
12.
Int Immunol ; 27(10): 531-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25999596

RESUMO

Although classically B cells are known to play important roles in immune protection via humoral immunity, recently their regulatory mechanisms have been best appreciated in the context of autoimmunity. Several studies have identified different subsets of regulatory B cells that vary not only in their phenotype but also in their mechanism of action. Although the best-studied mechanism of B-cell immune regulation is IL-10 production, other IL-10-independent mechanisms have been proposed. These include maintenance of CD4(+)Foxp3(+) regulatory T cells; production of transforming growth factor-ß, IL-35, IgM or adenosine or expression of PD-L1 (programmed death 1 ligand 1) or FasL (Fas ligand). Given that B-cell-targeted therapy is being increasingly used in the clinic, a complete understanding of the mechanisms whereby B cells regulate inflammation associated with specific diseases is required for designing safe and effective immunotherapies targeting B cells.


Assuntos
Linfócitos B Reguladores/imunologia , Linhagem da Célula/imunologia , Encefalomielite Autoimune Experimental/imunologia , Doença Enxerto-Hospedeiro/imunologia , Interleucinas/imunologia , Animais , Linfócitos B Reguladores/patologia , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Proteína Ligante Fas/genética , Proteína Ligante Fas/imunologia , Regulação da Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Humanos , Interleucina-10 , Interleucinas/genética , Camundongos , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
13.
J Virol ; 90(6): 2818-29, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719266

RESUMO

UNLABELLED: Gammaherpesviruses are ubiquitous pathogens that are associated with the development of B cell lymphomas. Gammaherpesviruses employ multiple mechanisms to transiently stimulate a broad, polyclonal germinal center reaction, an inherently mutagenic stage of B cell differentiation that is thought to be the primary target of malignant transformation in virus-driven lymphomagenesis. We found that this gammaherpesvirus-driven germinal center expansion was exaggerated and lost its transient nature in the absence of interferon-regulatory factor 1 (IRF-1), a transcription factor with antiviral and tumor suppressor functions. Uncontrolled and persistent expansion of germinal center B cells led to pathological changes in the spleens of chronically infected IRF-1-deficient animals. Additionally, we found decreased IRF-1 expression in cases of human posttransplant lymphoproliferative disorder, a malignant condition associated with gammaherpesvirus infection. The results of our study define an unappreciated role for IRF-1 in B cell biology and provide insight into the potential mechanism of gammaherpesvirus-driven lymphomagenesis. IMPORTANCE: Gammaherpesviruses establish lifelong infection in most adults and are associated with B cell lymphomas. While the infection is asymptomatic in many hosts, it is critical to identify individuals who may be at an increased risk of virus-induced cancer. Such identification is currently impossible, as the host risk factors that predispose individuals toward viral lymphomagenesis are poorly understood. The current study identifies interferon-regulatory factor 1 (IRF-1) to be one of such candidate host factors. Specifically, we found that IRF-1 enforces long-term suppression of an inherently mutagenic stage of B cell differentiation that gammaherpesviruses are thought to target for transformation. Correspondingly, in the absence of IRF-1, chronic gammaherpesvirus infection induced pathological changes in the spleens of infected animals. Further, we found decreased IRF-1 expression in human gammaherpesvirus-induced B cell malignancies.


Assuntos
Linfócitos B/imunologia , Linfócitos B/virologia , Transformação Celular Viral , Gammaherpesvirinae/imunologia , Centro Germinativo/imunologia , Interações Hospedeiro-Patógeno , Fator Regulador 1 de Interferon/metabolismo , Animais , Centro Germinativo/virologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias , Baço/imunologia , Baço/patologia , Baço/virologia
14.
Semin Immunol ; 26(5): 369-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24877594

RESUMO

It has been well appreciated that the endocannabinoid system can regulate immune responses via the cannabinoid receptor 2 (CB2), which is primarily expressed by cells of the hematopoietic system. The endocannabinoid system is composed of receptors, ligands and enzymes controlling the synthesis and degradation of endocannabinoids. Along with endocannabinoids, both plant-derived and synthetic cannabinoids have been shown to bind to and signal through CB2 via G proteins leading to both inhibitory and stimulatory signals depending on the biological process. Because no cannabinoid ligand has been identified that only binds to CB2, the generation of mice deficient in CB2 has greatly expanded our knowledge of how CB2 contributes to immune cell development and function in health and disease. In regards to humans, genetic studies have associated CB2 with a variety of human diseases. Here, we review the endocannabinoid system with an emphasis on CB2 and its role in the immune system.


Assuntos
Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Endocanabinoides/metabolismo , Sistema Imunitário/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sistema Nervoso Central/imunologia , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Endocanabinoides/imunologia , Regulação da Expressão Gênica , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Osteoporose/genética , Osteoporose/imunologia , Osteoporose/metabolismo , Osteoporose/patologia , Plantas/genética , Plantas/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais
15.
J Immunol Methods ; 396(1-2): 163-7, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23928494

RESUMO

The CD45 congenic marker system is a highly utilized technique to track hematopoietic cells following bone marrow transplantation (BMT), with CD45.1 and CD45.2 being efficiently distinguished by flow cytometry. During the analysis of control mixed BM chimera mice in which lethally irradiated recipients were transplanted with an equal number of BM cells from WT CD45.1 and WT CD45.2 mice, we observed an unequal reconstitution of specific B cell subsets in the bone marrow (BM), lymph node (LN) and spleen. Specifically, in the BM and LN, there was an increase in the percentage of CD45.2 mature B cells. In the spleen, an increase in the percentage of CD45.2 transitional (T) 1 and T2 cells was observed. In contrast, the percentage of splenic CD45.1 marginal zone (MZ) B cells was significantly increased. When we compared the percentage of B cell subsets in unmanipulated WT CD45.1 and WT CD45.2 mice, we found that WT CD45.2 mice had significantly more LN B cells while WT CD45.1 mice exhibited an increase in MZ B cells. These data indicate that the alteration in the ratio of CD45.1 and CD45.2 B cell subsets in mixed chimera mice is a cell-intrinsic effect. Thus whenever the CD45 congenic system is used to track two genetically distinct populations of immune cells WT chimeras must be generated to allow normalization of the experimental data to avoid the reporting of unintentionally skewed data.


Assuntos
Subpopulações de Linfócitos B/citologia , Células da Medula Óssea/citologia , Antígenos Comuns de Leucócito/genética , Alelos , Animais , Medula Óssea , Transplante de Medula Óssea , Quimera , Antígenos Comuns de Leucócito/biossíntese , Camundongos
16.
Autoimmunity ; 45(5): 388-99, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22443691

RESUMO

A dual role of B cells in experimental autoimmune encephalomyelitis (EAE), the animal model of the human autoimmune disease multiple sclerosis (MS), has been established. In the first role, B cells contribute to the pathogenesis of EAE through the production of anti-myelin antibodies that contribute to demyelination. On the contrary, B cells have also been shown to have protective functions in that they play an essential role in the spontaneous recovery from EAE. In this review, we summarize studies conducted in a number of species demonstrating the conditions under which B cells are pathogenic in EAE. We also discuss the phenotype and anti-inflammatory mechanisms of regulatory B cells.


Assuntos
Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Animais , Anticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Encefalomielite Autoimune Experimental/etiologia , Humanos , Imunoglobulinas/imunologia
17.
J Immunol ; 188(7): 3188-98, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22368274

RESUMO

B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (µMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into µMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Linfócitos T Reguladores/imunologia , Fatores de Necrose Tumoral/fisiologia , Transferência Adotiva , Animais , Anticorpos Monoclonais Murinos/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/transplante , Antígenos B7/imunologia , Técnicas de Cocultura , Homeostase , Interleucina-10/fisiologia , Contagem de Linfócitos , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rituximab , Baço/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
18.
Nat Immunol ; 12(6): 568-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21516111

RESUMO

Interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) require exposure to IL-23 to become encephalitogenic, but the mechanism by which IL-23 promotes their pathogenicity is not known. Here we found that IL-23 induced production of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) in T(H)17 cells and that GM-CSF had an essential role in their encephalitogenicity. Our findings identify a chief mechanism that underlies the important role of IL-23 in autoimmune diseases. IL-23 induced a positive feedback loop whereby GM-CSF secreted by T(H)17 cells stimulated the production of IL-23 by antigen-presenting cells. Such cross-regulation of IL-23 and GM-CSF explains the similar pattern of resistance to autoimmunity when either of the two cytokines is absent and identifies T(H)17 cells as a crucial source of GM-CSF in autoimmune inflammation.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-1/farmacologia , Interleucina-23/farmacologia , Células Th17/efeitos dos fármacos , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Antígeno CD11c/imunologia , Antígeno CD11c/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Feminino , Citometria de Fluxo , Glicoproteínas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Interleucina-1beta/farmacologia , Interleucina-23/imunologia , Interleucina-23/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fragmentos de Peptídeos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Fator de Crescimento Transformador beta/farmacologia
20.
J Neuroimmunol ; 230(1-2): 1-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21145597

RESUMO

Multiple sclerosis (MS) is considered to be a T cell-mediated autoimmune disease that results in the presence of inflammatory lesions/plaques associated with mononuclear cell infiltrates, demyelination and axonal damage within the central nervous system (CNS). To date, FDA approved therapies in MS are thought to largely function by modulation of the immune response. Since autoimmune responses require many arms of the immune system, the direct cellular mechanisms of action of MS therapeutics are not definitively known. The mouse model of MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in deciphering the mechanism of action of MS drugs. In addition, EAE has been widely used to study the contribution of individual components of the immune system in CNS autoimmunity. In this regard, the role of B cells in EAE has been studied in mice deficient in B cells due to genetic ablation and following depletion with a B cell-targeted monoclonal antibody (mAb) (anti-CD20). Both strategies have indicated that B cells regulate the extent of EAE clinical disease and in their absence disease is exacerbated. Thus a new population of "regulatory B cells" has emerged. One reoccurring component of regulatory B cell function is the production of IL-10, a pleiotropic cytokine with potent anti-inflammatory properties. B cell depletion has also indicated that B cells, in particular antibody production, play a pathogenic role in EAE. B cell depletion in MS using a mAb to CD20 (rituximab) has shown promising results. In this review, we will discuss the current thinking on the role of B cells in MS drawing from knowledge gained in EAE studies and clinical trials using therapeutics that target B cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Animais , Autoimunidade/imunologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA