Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744803

RESUMO

Cancer is the second most common cause of death in the United States, accounting for 602,350 deaths in 2020. Cancer-related death rates have declined by 27% over the past two decades, partially due to the identification of novel anti-cancer drugs. Despite improvements in cancer treatment, newly approved oncology drugs are associated with increased toxicity risk. These toxicities may be mitigated by pharmacokinetic optimization and reductions in off-target interactions. As such, there is a need for early-stage implementation of pharmacokinetic (PK) prediction tools. Several PK prediction platforms exist, including pkCSM, SuperCypsPred, Pred-hERG, Similarity Ensemble Approach (SEA), and SwissADME. These tools can be used in screening hits, allowing for the selection of compounds were reduced toxicity and/or risk of attrition. In this short commentary, we used PK prediction tools in the optimization of mitogen activated extracellular signal-related kinase kinase 1 (MEK1) inhibitors. In doing so, we identified MEK1 inhibitors with retained activity and optimized predictive PK properties, devoid of hERG inhibition. These data support the use of publicly available PK prediction platforms in early-stage drug discovery to design safer drugs.


Assuntos
Antineoplásicos , Descoberta de Drogas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Exp Neurol ; 325: 113133, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31770520

RESUMO

Therapeutic hypothermia is a potential protective strategy after stroke. The present study evaluated the neurovascular protective potential of pharmacological hypothermia induced by the neurotensin receptor 1 agonist HPI-201 after severe ischemic stroke. Adult C57BL/6 mice were subjected to filament insertion-induced occlusion of the middle cerebral artery (60 min MCAO). HPI-201 was i.p. injected 120 min after the onset of MCAO to initiate and maintain the body temperature at 32-33°C for 6 hrs. The infarct volume, cell death, integrity of the blood brain barrier (BBB) and neurovascular unit (NVU), inflammation, and functional outcomes were evaluated. The hypothermic treatment significantly suppressed the infarct volume and neuronal cell death, accompanied with reduced caspase-3 activation and BAX expression while Bcl-2 increased in the peri-infarct region. The cellular integrity of the BBB and NVU was significantly improved and brain edema was attenuated in HPI-201-treated mice compared to stroke controls. The hypothermic treatment decreased the expression of inflammatory factors including tumor necrosis factor-α (TNF-α), MMP-9, interleukin-1ß (IL-1ß), the M1 microglia markers IL-12 and inducible nitric oxide synthase (iNOS), while increased the M2 marker arginase-1 (Arg-1). Stroke mice received the hypothermic treatment showed lower neurological severity score (NSS), performed significantly better in functional tests, the mortality rate in the hypothermic group was noticeably lower compared with stroke controls. Taken together, HPI-201 induced pharmacological hypothermia is protective for different neurovascular cells after a severely injured brain, mediated by multiple mechanisms.


Assuntos
Encéfalo/patologia , Hipotermia Induzida/métodos , Infarto da Artéria Cerebral Média/patologia , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurotensina/agonistas , Acoplamento Neurovascular/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos
3.
Neurobiol Dis ; 96: 248-260, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27659107

RESUMO

Stroke is a leading threat to human life and health in the US and around the globe, while very few effective treatments are available for stroke patients. Preclinical and clinical studies have shown that therapeutic hypothermia (TH) is a potential treatment for stroke. Using novel neurotensin receptor 1 (NTR1) agonists, we have demonstrated pharmacologically induced hypothermia and protective effects against brain damages after ischemic stroke, hemorrhage stroke, and traumatic brain injury (TBI) in rodent models. To further characterize the mechanism of TH-induced brain protection, we examined the effect of TH (at ±33°C for 6h) induced by the NTR1 agonist HPI-201 or physical (ice/cold air) cooling on inflammatory responses after ischemic stroke in mice and oxygen glucose deprivation (OGD) in cortical neuronal cultures. Seven days after focal cortical ischemia, microglia activation in the penumbra reached a peak level, which was significantly attenuated by TH treatments commenced 30min after stroke. The TH treatment decreased the expression of M1 type reactive factors including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-12, IL-23, and inducible nitric oxide synthase (iNOS) measured by RT-PCR and Western blot analyses. Meanwhile, TH treatments increased the expression of M2 type reactive factors including IL-10, Fizz1, Ym1, and arginase-1. In the ischemic brain and in cortical neuronal/BV2 microglia cultures subjected to OGD, TH attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α), two key chemokines in the regulation of microglia activation and infiltration. Consistently, physical cooling during OGD significantly decreased microglia migration 16h after OGD. Finally, TH improved functional recovery at 1, 3, and 7days after stroke. This study reveals the first evidence for hypothermia mediated regulation on inflammatory factor expression, microglia polarization, migration and indicates that the anti-inflammatory effect is an important mechanism underlying the brain protective effects of a TH therapy.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Citocinas/metabolismo , Hipotermia Induzida/métodos , Infarto da Artéria Cerebral Média/terapia , Microglia/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Embrião de Mamíferos , Glucose/deficiência , Hipóxia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Oligopeptídeos/uso terapêutico , Oxigênio , Fosfopiruvato Hidratase/metabolismo
4.
Exp Neurol ; 267: 135-142, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25725354

RESUMO

Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. In addition, general anesthesia is usually required to mitigate the negative effects of shivering during physical cooling. Our recent investigations demonstrate the potential therapeutic benefits of pharmacologically induced hypothermia (PIH) using the neurotensin receptor (NTR) agonist HPI201 (formerly known as ABS201) in stroke and TBI models of adult rodents. The present investigation explored the brain protective effects of HPI201 in a P14 rat pediatric model of TBI induced by controlled cortical impact. When administered via intraperitoneal (i.p.) injection, HPI201 induced dose-dependent reduction of body and brain temperature. A 6-h hypothermic treatment, providing an overall 2-3°C reduction of brain and body temperature, showed significant effect of attenuating the contusion volume versus TBI controls. Attenuation occurs whether hypothermia is initiated 15min or 2h after TBI. No shivering response was seen in HPI201-treated animals. HPI201 treatment also reduced TUNEL-positive and TUNEL/NeuN-colabeled cells in the contusion area and peri-injury regions. TBI-induced blood-brain barrier damage was attenuated by HPI201 treatment, evaluated using the Evans Blue assay. HPI201 significantly decreased MMP-9 levels and caspase-3 activation, both of which are pro-apototic, while it increased anti-apoptotic Bcl-2 gene expression in the peri-contusion region. In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and IL-6. In sensorimotor activity assessments, rats in the HPI201 treated group exhibited improved functional recovery after TBI versus controls. These data support that PIH therapy using our NTR agonist is effective in reducing neuronal and BBB damage, attenuating inflammatory response and detrimental cellular signaling, and promoting functional recovery after TBI in the developing brain, supporting its potential for further evaluation towards clinical development.


Assuntos
Temperatura Corporal/efeitos dos fármacos , Lesões Encefálicas/terapia , Hipotermia Induzida , Animais , Animais Recém-Nascidos , Barreira Hematotesticular/efeitos dos fármacos , Barreira Hematotesticular/patologia , Temperatura Corporal/fisiologia , Lesões Encefálicas/patologia , Caspase 3/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Marcação In Situ das Extremidades Cortadas , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Oligopeptídeos/farmacologia , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
J Neurotrauma ; 31(16): 1417-30, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24731132

RESUMO

Preclinical and clinical studies have shown therapeutic potential of mild-to-moderate hypothermia for treatments of stroke and traumatic brain injury (TBI). Physical cooling in humans, however, is usually slow, cumbersome, and necessitates sedation that prevents early application in clinical settings and causes several side effects. Our recent study showed that pharmacologically induced hypothermia (PIH) using a novel neurotensin receptor 1 (NTR1) agonist, HPI-201 (also known as ABS-201), is efficient and effective in inducing therapeutic hypothermia and protecting the brain from ischemic and hemorrhagic stroke in mice. The present investigation tested another second-generation NTR1 agonist, HPI-363, for its hypothermic and protective effect against TBI. Adult male mice were subjected to controlled cortical impact (CCI) (velocity=3 m/sec, depth=1.0 mm, contact time=150 msec) to the exposed cortex. Intraperitoneal administration of HPI-363 (0.3 mg/kg) reduced body temperature by 3-5°C within 30-60 min without triggering a shivering defensive reaction. An additional two injections sustained the hypothermic effect in conscious mice for up to 6 h. This PIH treatment was initiated 15, 60, or 120 min after the onset of TBI, and significantly reduced the contusion volume measured 3 days after TBI. HPI-363 attenuated caspase-3 activation, Bax expression, and TUNEL-positive cells in the pericontusion region. In blood-brain barrier assessments, HPI-363 ameliorated extravasation of Evans blue dye and immunoglobulin G, attenuated the MMP-9 expression, and decreased the number of microglia cells in the post-TBI brain. HPI-363 decreased the mRNA expression of tumor necrosis factor-α and interleukin-1ß (IL-1ß), but increased IL-6 and IL-10 levels. Compared with TBI control mice, HPI-363 treatments improved sensorimotor functional recovery after TBI. These findings suggest that the second generation NTR-1 agonists, such as HPI-363, are efficient hypothermic-inducing compounds that have a strong potential in the management of TBI.


Assuntos
Lesões Encefálicas/patologia , Hipotermia Induzida/métodos , Oligopeptídeos/farmacologia , Receptores de Neurotensina/agonistas , Animais , Western Blotting , Modelos Animais de Doenças , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
6.
J Pharm Pharmacol ; 57(3): 327-33, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15807988

RESUMO

Neurotensin is a linear tridecapeptide that elicits a variety of physiological responses in the brain, including hypothermia and antinociception, and reduced levels have been linked to schizophrenia. Previously in our laboratory we developed a truncated neurotensin derivative, KK13. This hexapeptide exhibited key pharmacokinetic and behavioural characteristics of an antipsychotic and elicited central effects after oral administration. To examine the potential mechanism(s) of uptake, a radioactive analogue of KK13 (*KK13) was synthesized, characterized, and evaluated in the Caco-2 cell model of the human intestinal epithelium. Results suggested that uptake of *KK13 was a time-dependent passive process. A general linear trend in uptake was demonstrated over the concentration range (10 microM-1 m M) tested, and uptake was neither pH- nor sodium-dependent. Finally, after 60 min, intact *KK13 was identified associated with the cell components, providing further evidence for uptake and stability of the peptide.


Assuntos
Neurotensina/análogos & derivados , Neurotensina/farmacocinética , Oligopeptídeos/farmacocinética , Fragmentos de Peptídeos/farmacocinética , Trifosfato de Adenosina/farmacologia , Células CACO-2 , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Sódio/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA