Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1407567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100677

RESUMO

Introduction: NK cells can mediate tumor cell killing by natural cytotoxicity and by antibody-dependent cell-mediated cytotoxicity (ADCC), an anti-tumor mechanism mediated through the IgG Fc receptor CD16A (FcγRIIIA). CD16A polymorphisms conferring increased affinity for IgG positively correlate with clinical outcomes during monoclonal antibody therapy for lymphoma, linking increased binding affinity with increased therapeutic potential via ADCC. We have previously reported on the FcγR fusion CD64/16A consisting of the extracellular region of CD64 (FcγRI), a high-affinity Fc receptor normally expressed by myeloid cells, and the transmembrane/cytoplasmic regions of CD16A, to create a highly potent and novel activating fusion receptor. Here, we evaluate the therapeutic potential of engineered induced pluripotent stem cell (iPSC)-derived NK (iNK) cells expressing CD64/16A as an "off-the-shelf", antibody-armed cellular therapy product with multi-antigen targeting potential. Methods: iNK cells were generated from iPSCs engineered to express CD64/16A and an interleukin (IL)-15/IL-15Rα fusion (IL-15RF) protein for cytokine independence. iNK cells and peripheral blood NK cells were expanded using irradiated K562-mbIL21-41BBL feeder cells to examine in in vitro and in vivo assays using the Raji lymphoma cell line. ADCC was evaluated in real-time by IncuCyte assays and using a xenograft mouse model with high circulating levels of human IgG. Results: Our data show that CD64/16A expressing iNK cells can mediate potent anti-tumor activity against human B cell lymphoma. In particular, (i) under suboptimal conditions, including low antibody concentrations and low effector-to-target ratios, iNK-CD64/16A cells mediate ADCC, (ii) iNK-CD64/16A cells can be pre-loaded with tumor-targeting antibodies (arming) to elicit ADCC, (iii) armed iNK-CD64/16A cells can be repurposed with additional antibodies to target new tumor antigens, and (iv) cryopreserved, armed iNK-CD64/16A are capable of sustained ADCC in a tumor xenograft model under saturating levels of human IgG. Discussion: iNK-CD64/16A cells allow for a flexible use of antibodies (antibody arming and antibody targeting), and an "off-the-shelf" platform for multi-antigen recognition to overcome limitations of adoptive cell therapies expressing fixed antigen receptors leading to cancer relapse due to antigen escape variants.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Antígenos de Neoplasias , Células-Tronco Pluripotentes Induzidas , Células Matadoras Naturais , Linfoma , Receptores de IgG , Ensaios Antitumorais Modelo de Xenoenxerto , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Receptores de IgG/genética , Humanos , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Camundongos , Linfoma/terapia , Linfoma/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/imunologia , Antígenos de Neoplasias/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/genética , Camundongos SCID
2.
J Immunother Cancer ; 12(7)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39053944

RESUMO

BACKGROUND: Natural killer (NK) cells are being extensively studied as a cell therapy for cancer. These cells are activated by recognition of ligands and antigens on tumor cells. Cytokine therapies, such as IL-15, are also broadly used to stimulate endogenous and adoptively transferred NK cells in patients with cancer. These stimuli activate the membrane protease ADAM17, which cleaves various cell-surface receptors on NK cells as a negative feedback loop to limit their cytolytic function. ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo. In this study, we investigated the underlying mechanism of this process. METHODS: Peripheral blood mononuclear cells (PBMCs) or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15±an ADAM17 function-blocking antibody. Different fully human versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab')2, and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A binding. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell antitumor activity. RESULTS: The ADAM17 function-blocking monoclonal antibody (mAb) Medi-1 markedly increased early NK cell activation by IL-15. By using different engineered versions of the antibody, we demonstrate involvement by CD16A, an activating Fcγ receptor and well-described ADAM17 substrate. Hence, Medi-1 when bound to ADAM17 on NK cells is engaged by CD16A and blocks its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide or dysfunction. Synergistic signaling by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A+ NK cells and augmented their proliferation in the presence of PBMC accessory cells or an anti-CD137 agonistic mAb. CONCLUSIONS: Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively, with the latter requiring PBMC accessory cells. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the antitumor activity of NK cells in patients with cancer.


Assuntos
Proteína ADAM17 , Proliferação de Células , Interleucina-15 , Células Matadoras Naturais , Ativação Linfocitária , Receptores de IgG , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteína ADAM17/metabolismo , Interleucina-15/metabolismo , Interleucina-15/farmacologia , Receptores de IgG/metabolismo , Proteínas Ligadas por GPI/metabolismo
3.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798522

RESUMO

Background: NK cells are being extensively studied as a cell therapy for cancer. Their effector functions are induced by the recognition of ligands on tumor cells and by various cytokines. IL-15 is broadly used to stimulate endogenous and adoptively transferred NK cells in cancer patients. These stimuli activate the membrane protease ADAM17, which then cleaves assorted receptors on the surface of NK cells as a negative feedback loop to limit their activation and function. We have shown that ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo . In this study, we investigated the underlying mechanism of this process. Methods: PBMCs or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15 +/- an ADAM17 function-blocking antibody. Different versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab') 2 , and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A engagement on NK cells. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell anti-tumor activity. Results: The ADAM17 function-blocking mAb Medi-1 markedly increased initial NK cell activation by IL-15. Using different engineered versions of the antibody revealed that the activating Fcγ receptor CD16A, a well-described ADAM17 substrate, was critical for enhancing IL-15 stimulation. Hence, Medi-1 bound to ADAM17 on NK cells can be engaged by CD16A and block its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide, phagocytosis, or dysfunction. Synergistic activity by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A + NK cells and augmented their proliferation in the presence of PBMC accessory cells. Conclusions: Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the anti-tumor activity of NK cells in cancer patients. What is already known on this topic: NK cell therapies are being broadly investigated to treat cancer. NK cell stimulation by IL-15 prolongs their survival in cancer patients. Various stimuli including IL-15 activate ADAM17 in NK cells, a membrane protease that regulates the cell surface density of various receptors as a negative feedback mechanism. What this study adds: Treating NK cells with the ADAM17 function-blocking mAb Medi-1 markedly enhanced their activation and proliferation. Our study reveals that the Fc and Fab regions of Medi-1 function synergistically with IL-15 in NK cell activation. Medi-1 treatment augments the upregulation of CD137 by NK cells, which enhances their proliferation in the presence of PBMC accessory cells. How this study might affect research practice or policy: Our study is of translational importance as Medi-1 treatment in combination with IL-15 could potentially augment the proliferation and function of endogenous or adoptively transferred NK cells in cancer patients.

4.
J Immunother Cancer ; 11(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056893

RESUMO

BACKGROUND: Antibody therapies can direct natural killer (NK) cells to tumor cells, tumor-associated cells, and suppressive immune cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). This antigen-specific effector function of human NK cells is mediated by the IgG Fc receptor CD16A (FcγRIIIA). Preclinical and clinical studies indicate that increasing the binding affinity and avidity of CD16A for antibodies improves the therapeutic potential of ADCC. CD64 (FcγRI), expressed by myeloid cells but not NK cells, is the only high affinity IgG Fc receptor and is uniquely capable of stably binding to free monomeric IgG as a physiological function. We have reported on the generation of the FcγR fusion CD64/16A, consisting of the extracellular region of CD64 and the transmembrane and cytoplasmic regions from CD16A, retaining its signaling and cellular activity. Here, we generated induced pluripotent stem cell (iPSC)-derived NK (iNK) cells expressing CD64/16A as a potential adoptive NK cell therapy for increased ADCC potency. METHODS: iPSCs were engineered to express CD64/16A as well as an interleukin (IL)-15/IL-15Rα fusion (IL-15RF) protein and differentiated into iNK cells. iNK cells and peripheral blood NK cells were expanded using irradiated K562-mbIL21-41BBL feeder cells and examined. NK cells, ovarian tumor cell lines, and therapeutic monoclonal antibodies were used to assess ADCC in vitro, performed by a DELFIA EuTDA assay or in real-time by IncuCyte assays, and in vivo. For the latter, we developed a xenograft mouse model with high circulating levels of human IgG for more physiological relevance. RESULTS: We demonstrate that (1) iNK-CD64/16A cells after expansion or thaw from cryopreservation can be coupled to therapeutic antibodies, creating armed iNK cells; (2) antibody-armed iNK-CD64/16A cells can be redirected by added antibodies to target new tumor antigens, highlighting additional potential of these cells; (3) cytokine-autonomous activity by iNK-CD64/16A cells engineered to express IL-15RF; and that (4) antibody-armed iNK-CD64/16A cells thawed from cryopreservation are capable of sustained and robust ADCC in vitro and in vivo, as determined by using a modified tumor xenograft model with high levels of competing human IgG. CONCLUSIONS: iNK cells expressing CD64/16A provide an off-the-shelf multiantigen targeting platform to address tumor heterogeneity and mitigate antigen escape.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores de IgG , Humanos , Animais , Camundongos , Receptores de IgG/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Matadoras Naturais , Linhagem Celular Tumoral , Imunoglobulina G
5.
Front Immunol ; 12: 711621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367174

RESUMO

Natural killer (NK) cells are innate cytotoxic lymphocytes that can recognize assorted determinants on tumor cells and rapidly kill these cells. Due to their anti-tumor effector functions and potential for allogeneic use, various NK cell platforms are being examined for adoptive cell therapies. However, their limited in vivo persistence is a current challenge. Cytokine-mediated activation of these cells is under extensive investigation and interleukin-15 (IL-15) is a particular focus since it drives their activation and proliferation. IL-15 efficacy though is limited in part by its induction of regulatory checkpoints. A disintegrin and metalloproteinase-17 (ADAM17) is broadly expressed by leukocytes, including NK cells, and it plays a central role in cleaving cell surface receptors, a process that regulates cell activation and cell-cell interactions. We report that ADAM17 blockade with a monoclonal antibody markedly increased human NK cell proliferation by IL-15 both in vitro and in a xenograft mouse model. Blocking ADAM17 resulted in a significant increase in surface levels of the homing receptor CD62L on proliferating NK cells. We show that NK cell proliferation in vivo by IL-15 and the augmentation of this process upon blocking ADAM17 are dependent on CD62L. Hence, our findings reveal for the first time that ADAM17 activation in NK cells by IL-15 limits their proliferation, presumably functioning as a feedback system, and that its substrate CD62L has a key role in this process in vivo. ADAM17 blockade in combination with IL-15 may provide a new approach to improve NK cell persistence and function in cancer patients.


Assuntos
Proteína ADAM17/metabolismo , Interleucina-15/farmacologia , Células Matadoras Naturais/citologia , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/imunologia , Transferência Adotiva , Animais , Divisão Celular , Ativação Enzimática , Feminino , Xenoenxertos , Humanos , Interleucina-15/metabolismo , Células Matadoras Naturais/enzimologia , Selectina L/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/farmacologia
6.
Cancers (Basel) ; 13(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467027

RESUMO

Tumor-targeting monoclonal antibodies (mAbs) are the most widely used and characterized immunotherapy for hematologic and solid tumors. The significance of this therapy is their direct and indirect effects on tumor cells, facilitated by the antibody's antigen-binding fragment (Fab) and fragment crystallizable region (Fc region), respectively. The Fab can modulate the function of cell surface markers on tumor cells in an agonistic or antagonistic manner, whereas the Fc region can be recognized by an Fc receptor (FcR) on leukocytes through which various effector functions, including antibody-dependent cell-mediated cytotoxicity (ADCC), can be elicited. This process is a key cytolytic mechanism of natural killer (NK) cells. These innate lymphocytes in the human body recognize tumor-bound antibodies exclusively by the IgG Fc receptor CD16A (FcγRIIIA). Two allelic versions of CD16A bind IgG with either lower or higher affinity. Cancer patients homozygous for the higher affinity allele of CD16A have been reported to respond significantly better to mAb therapies for various malignancies. These studies revealed that mAb therapy efficacy positively correlates with higher affinity binding to CD16A. Approaches to enhance tumor antigen targeting by NK cells by modifying the Fc portion of antibodies or the FcR on NK cells are the focus of this review.

7.
Front Immunol ; 9: 1168, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892299

RESUMO

Natural killer (NK) cells are innate lymphocytes that play essential roles in mediating antitumor immunity. NK cells respond to various inflammatory stimuli including cytokines and stress-induced cellular ligands which activate germline-encoded activation receptors (NKRs), such as NKG2D. The signaling molecules activated downstream of NKRs are well defined; however, the mechanisms that regulate these pathways are not fully understood. IQ domain-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein. It regulates diverse cellular signaling programs in various physiological contexts, including immune cell activation and function. Therefore, we sought to investigate the role of IQGAP1 in NK cells. Development and maturation of NK cells from mice lacking IQGAP1 (Iqgap1-/- ) were mostly intact; however, the absolute number of splenic NK cells was significantly reduced. Phenotypic and functional characterization revealed a significant reduction in the egression of NK cells from the bone marrow of Iqagp1-/- mice altering their peripheral homeostasis. Lack of IQGAP1 resulted in reduced NK cell motility and their ability to mediate antitumor immunity in vivo. Activation of Iqgap1-/- NK cells via NKRs, including NKG2D, resulted in significantly reduced levels of inflammatory cytokines compared with wild-type (WT). This reduction in Iqgap1-/- NK cells is neither due to an impaired membrane proximal signaling nor a defect in gene transcription. The levels of Ifng transcripts were comparable between WT and Iqgap1-/- , suggesting that IQGAP1-dependent regulation of cytokine production is regulated by a post-transcriptional mechanism. To this end, Iqgap1-/- NK cells failed to fully induce S6 phosphorylation and showed significantly reduced protein translation following NKG2D-mediated activation, revealing a previously undefined regulatory function of IQGAP1 via the mechanistic target of rapamycin complex 1. Together, these results implicate IQGAP1 as an essential scaffold for NK cell homeostasis and function and provide novel mechanistic insights to the post-transcriptional regulation of inflammatory cytokine production.


Assuntos
Citocinas/imunologia , Citoesqueleto/imunologia , Células Matadoras Naturais/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Biossíntese de Proteínas/imunologia , Proteínas Ativadoras de ras GTPase/imunologia , Animais , Citocinas/genética , Citoesqueleto/genética , Células Matadoras Naturais/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Biossíntese de Proteínas/genética , Proteínas Ativadoras de ras GTPase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA