Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(39): eadm9582, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39321290

RESUMO

Central tolerance of thymocytes to self-antigen depends on the medullary thymic epithelial cell (mTEC) transcription factor autoimmune regulator (Aire), which drives tissue-restricted antigen (TRA) gene expression. Vitamin D signaling regulates Aire and TRA expression in mTECs, providing a basis for links between vitamin D deficiency and autoimmunity. We find that mice lacking Cyp27b1, which cannot produce hormonally active vitamin D, display profoundly reduced thymic cellularity, with a reduced proportion of Aire+ mTECs, attenuated TRA expression, and poorly defined cortical-medullary boundaries. Markers of T cell negative selection are diminished, and organ-specific autoantibodies are present in knockout (KO) mice. Single-cell RNA sequencing revealed that loss of Cyp27b1 skews mTEC differentiation toward Ccl21+ intertypical TECs and generates a gene expression profile consistent with premature aging. KO thymi display accelerated involution and reduced expression of thymic longevity factors. Thus, loss of thymic vitamin D signaling disrupts normal mTEC differentiation and function and accelerates thymic aging.


Assuntos
Senilidade Prematura , Diferenciação Celular , Células Epiteliais , Camundongos Knockout , Transdução de Sinais , Timo , Vitamina D , Animais , Timo/metabolismo , Timo/citologia , Células Epiteliais/metabolismo , Vitamina D/metabolismo , Camundongos , Senilidade Prematura/metabolismo , Senilidade Prematura/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína AIRE , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética
2.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333362

RESUMO

Esophageal adenocarcinoma arises from Barrett's esophagus, a precancerous metaplastic replacement of squamous by columnar epithelium in response to chronic inflammation. Multi-omics profiling, integrating single-cell transcriptomics, extracellular matrix proteomics, tissue-mechanics and spatial proteomics of 64 samples from 12 patients' paths of progression from squamous epithelium through metaplasia, dysplasia to adenocarcinoma, revealed shared and patient-specific progression characteristics. The classic metaplastic replacement of epithelial cells was paralleled by metaplastic changes in stromal cells, ECM and tissue stiffness. Strikingly, this change in tissue state at metaplasia was already accompanied by appearance of fibroblasts with characteristics of carcinoma-associated fibroblasts and of an NK cell-associated immunosuppressive microenvironment. Thus, Barrett's esophagus progresses as a coordinated multi-component system, supporting treatment paradigms that go beyond targeting cancerous cells to incorporating stromal reprogramming.

3.
NPJ Vaccines ; 6(1): 106, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417462

RESUMO

The Vero cell line is the most used continuous cell line for viral vaccine manufacturing with more than 40 years of accumulated experience in the vaccine industry. Additionally, the Vero cell line has shown a high affinity for infection by MERS-CoV, SARS-CoV, and recently SARS-CoV-2, emerging as an important discovery and screening tool to support the global research and development efforts in this COVID-19 pandemic. However, the lack of a reference genome for the Vero cell line has limited our understanding of host-virus interactions underlying such affinity of the Vero cell towards key emerging pathogens, and more importantly our ability to redesign high-yield vaccine production processes using Vero genome editing. In this paper, we present an annotated highly contiguous 2.9 Gb assembly of the Vero cell genome. In addition, several viral genome insertions, including Adeno-associated virus serotypes 3, 4, 7, and 8, have been identified, giving valuable insights into quality control considerations for cell-based vaccine production systems. Variant calling revealed that, in addition to interferon, chemokines, and caspases-related genes lost their functions. Surprisingly, the ACE2 gene, which was previously identified as the host cell entry receptor for SARS-CoV and SARS-CoV-2, also lost function in the Vero genome due to structural variations.

4.
Nat Commun ; 12(1): 1749, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741928

RESUMO

Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.


Assuntos
Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Meduloblastoma/genética , Transcriptoma , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Redes Reguladoras de Genes , Variação Genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética , Adulto Jovem
5.
Neuro Oncol ; 23(9): 1470-1480, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433612

RESUMO

BACKGROUND: Sixty percent of surgically resected brain metastases (BrM) recur within 1 year. These recurrences have long been thought to result from the dispersion of cancer cells during surgery. We tested the alternative hypothesis that invasion of cancer cells into the adjacent brain plays a significant role in local recurrence and shortened overall survival. METHODS: We determined the invasion pattern of 164 surgically resected BrM and correlated with local recurrence and overall survival. We performed single-cell RNA sequencing (scRNAseq) of >15,000 cells from BrM and adjacent brain tissue. Validation of targets was performed with a novel cohort of BrM patient-derived xenografts (PDX) and patient tissues. RESULTS: We demonstrate that invasion of metastatic cancer cells into the adjacent brain is associated with local recurrence and shortened overall survival. scRNAseq of paired tumor and adjacent brain samples confirmed the existence of invasive cancer cells in the tumor-adjacent brain. Analysis of these cells identified cold-inducible RNA-binding protein (CIRBP) overexpression in invasive cancer cells compared to cancer cells located within the metastases. Applying PDX models that recapitulate the invasion pattern observed in patients, we show that CIRBP is overexpressed in highly invasive BrM and is required for efficient invasive growth in the brain. CONCLUSIONS: These data demonstrate peritumoral invasion as a driver of treatment failure in BrM that is functionally mediated by CIRBP. These findings improve our understanding of the biology underlying postoperative treatment failure and lay the groundwork for rational clinical trial development based upon invasion pattern in surgically resected BrM.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Encéfalo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Humanos , Recidiva Local de Neoplasia/genética , Proteínas de Ligação a RNA/genética
6.
Cell Mol Neurobiol ; 41(5): 1039-1055, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33010019

RESUMO

The opioid receptor (OPR) family comprises the mu-, delta-, and kappa-opioid, and nociceptin receptors that belong to the superfamily of 7-transmembrane spanning G protein-coupled receptors (GPCRs). The mu-opioid receptor is the main target for clinically used opioid analgesics, and its biology has been extensively studied. The N-terminally truncated 6TM receptors isoform produced through alternative splicing of the OPRM1 gene displays unique signaling and analgesic properties, but it is unclear if other OPRs have the same ability. In this study, we have built a comprehensive map of alternative splicing events that produce 6TM receptor variants in all the OPRs and demonstrated their evolutionary conservation. We then obtained evidence for their translation through ribosomal footprint analysis. We discovered that N-terminally truncated 6TM GPCRs are rare in the human genome and OPRs are overrepresented in this group. Finally, we also observed a significant enrichment of 6TM GPCR genes among genes associated with pain, psychiatric disorders, and addiction. Understanding the biology of 6TM receptors and leveraging this knowledge for drug development should pave the way for novel therapies.


Assuntos
Processamento Alternativo/genética , Sequência Conservada/genética , Receptores Opioides delta/genética , Receptores Opioides kappa/genética , Receptores Opioides mu/genética , Receptores Opioides/genética , Animais , Linhagem Celular Tumoral , Bases de Dados Genéticas , Variação Genética/genética , Humanos , Macaca , Camundongos , Especificidade da Espécie , Receptor de Nociceptina
7.
Nat Metab ; 2(1): 97-109, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32066997

RESUMO

The complex relationship between metabolic disease risk and body fat distribution in humans involves cellular characteristics which are specific to body fat compartments. Here we show depot-specific differences in the stromal vascual fraction of visceral and subcutaneous adipose tissue by performing single-cell RNA sequencing of tissue specimen from obese individuals. We characterize multiple immune cells, endothelial cells, fibroblasts, adipose and hematopoietic stem cell progenitors. Subpopulations of adipose-resident immune cells are metabolically active and associated with metabolic disease status and those include a population of potential dysfunctional CD8+ T cells expressing metallothioneins. We identify multiple types of adipocyte progenitors that are common across depots, including a subtype enriched in individuals with type 2 diabetes. Depot-specific analysis reveals a class of adipocyte progenitors unique to visceral adipose tissue, which shares common features with beige preadipocytes. Our human single-cell transcriptome atlas across fat depots provides a resource to dissect functional genomics of metabolic disease.


Assuntos
Tecido Adiposo/metabolismo , Doenças Metabólicas/metabolismo , Análise de Célula Única/métodos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Adulto , Distribuição da Gordura Corporal , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Doenças Metabólicas/patologia , Pessoa de Meia-Idade , Obesidade/metabolismo
8.
Mol Neurobiol ; 56(4): 2855-2869, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30066306

RESUMO

The delta-opioid receptor (DOPr) participates in mediating the effects of opioid analgesics. However, no selective agonists have entered clinical care despite potential to ameliorate many neurological and psychiatric disorders. In an effort to address the drug development challenges, the functional contribution of receptor isoforms created by alternative splicing of the three-exonic coding gene, OPRD1, has been overlooked. We report that the gene is transcriptionally more diverse than previously demonstrated, producing novel protein isoforms in humans and mice. We provide support for the functional relevance of splice variants through context-dependent expression profiling (tissues, disease model) and conservation of the transcriptional landscape in closely related vertebrates. The conserved alternative transcriptional events have two distinct patterns. First, cassette exon inclusions between exons 1 and 2 interrupt the reading frame, producing truncated receptor fragments comprising only the first transmembrane (TM) domain, despite the lack of exact exon orthologues between distant species. Second, a novel promoter and transcriptional start site upstream of exon 2 produces a transcript of an N-terminally truncated 6TM isoform. However, a fundamental difference in the exonic landscaping as well as translation and translation products poses limits for modelling the human DOPr receptor system in mice.


Assuntos
Processamento Alternativo/genética , Receptores Opioides delta/genética , Animais , Linhagem Celular Tumoral , Dor Crônica/genética , Dor Crônica/patologia , Sequência Conservada , Modelos Animais de Doenças , Evolução Molecular , Feto/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Opioides delta/metabolismo , Ribossomos/metabolismo
9.
Nat Genet ; 46(1): 39-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316981

RESUMO

Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.


Assuntos
Neoplasias Encefálicas/genética , Cromossomos Humanos Par 19 , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Humanos , Masculino , Isoformas de Proteínas , Proteína p130 Retinoblastoma-Like/genética , Ensaios Antitumorais Modelo de Xenoenxerto , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA