Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 32(3): 296-305, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30199341

RESUMO

The plant hormone salicylic acid (SA) plays a critical role in defense against biotrophic pathogens such as Plasmodiophora brassicae, which is an obligate pathogen of crucifer species and the causal agent of clubroot disease of canola (Brassica napus). P. brassicae encodes a protein, predicted to be secreted, with very limited homology to benzoic acid (BA)/SA-methyltransferase, designated PbBSMT. PbBSMT has a SA- and an indole-3-acetic acid-binding domain, which are also present in Arabidopsis thaliana BSMT1 (AtBSMT1) and, like AtBSMT1, has been shown to methylate BA and SA. In support of the hypothesis that P. brassicae uses PbBSMT to overcome SA-mediated defenses by converting SA into inactive methyl salicylate (MeSA), here, we show that PbBSMT suppresses local defense and provide evidence that PbBSMT is much more effective than AtBSMT1 at suppressing the levels of SA and its associated effects. Basal SA levels in Arabidopsis plants that constitutively overexpress PbBSMT compared with those in Arabidopsis wild-type Col-0 (WT) were reduced approximately 80% versus only a 50% reduction in plants overexpressing AtBSMT1. PbBSMT-overexpressing plants were more susceptible to P. brassicae than WT plants; they also were partially compromised in nonhost resistance to Albugo candida. In contrast, AtBSMT1-overexpressing plants were not more susceptible than WT to either P. brassicae or A. candida. Furthermore, transgenic Arabidopsis and tobacco plants overexpressing PbBSMT exhibited increased susceptibility to virulent Pseudomonas syringae pv. tomato DC3000 (DC3000) and virulent Pseudomonas syringae pv. tabaci, respectively. Gene-mediated resistance to DC3000/AvrRpt2 and tobacco mosaic virus (TMV) was also compromised in Arabidopsis and Nicotiana tabacum 'Xanthi-nc' plants overexpressing PbBSMT, respectively. Transient expression of PbBSMT or AtBSMT1 in lower leaves of N. tabacum Xanthi-nc resulted in systemic acquired resistance (SAR)-like enhanced resistance to TMV in the distal systemic leaves. Chimeric grafting experiments revealed that, similar to SAR, the development of a PbBSMT-mediated SAR-like phenotype was also dependent on the MeSA esterase activity of NtSABP2 in the systemic leaves. Collectively, these results strongly suggest that PbBSMT is a novel effector, which is secreted by P. brassicae into its host plant to deplete pathogen-induced SA accumulation.


Assuntos
Arabidopsis , Plasmodioforídeos , Ácido Salicílico , Virulência , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Plasmodioforídeos/metabolismo , Plasmodioforídeos/patogenicidade , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Virulência/genética
2.
iScience ; 3: 177-191, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30428318

RESUMO

Leptosphaeria maculans, the causal agent of blackleg disease in canola (Brassica napus), secretes an array of effectors into the host to overcome host defense. Here we present evidence that the L. maculans effector protein AvrLm1 functions as a virulence factor by interacting with the B. napus mitogen-activated protein (MAP) kinase 9 (BnMPK9), resulting in increased accumulation and enhanced phosphorylation of the host protein. Transient expression of BnMPK9 in Nicotiana benthamiana induces cell death, and this phenotype is enhanced in the presence of AvrLm1, suggesting that induction of cell death due to enhanced accumulation and phosphorylation of BnMPK9 by AvrLm1 supports the initiation of necrotrophic phase of L. maculans infection. Stable expression of BnMPK9 in B. napus perturbs hormone signaling, notably salicylic acid response genes, to facilitate L. maculans infection. Our findings provide evidence that a MAP kinase is directly targeted by a fungal effector to modulate plant immunity.

3.
Microbiologyopen ; 1(3): 311-25, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23170230

RESUMO

The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r produces several iron-regulated metabolites, including the fluorescent siderophore pseudobactin (Psb374), salicylic acid (SA), and pseudomonine (Psm), a siderophore that contains a SA moiety. After purification of Psb374 from culture supernatant of WCS374r, its structure was determined following isoelectrofocusing and tandem mass spectrometry, and found to be identical to the fluorescent siderophore produced by P. fluorescens ATCC 13525. To study the role of SA and Psm production in colonization of Arabidopsis thaliana roots and in induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst) by strain WCS374r, mutants disrupted in the production of these metabolites were obtained by homologous recombination. These mutants were further subjected to transposon Tn5 mutagenesis to generate mutants also deficient in Psb374 production. The mutants behaved similar to the wild type in both their Arabidopsis rhizosphere-colonizing capacity and their ability to elicit ISR against Pst. We conclude that Psb374, SA, and Psm production by P. fluorescens WCS374r are not required for eliciting ISR in Arabidopsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA