Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
CPT Pharmacometrics Syst Pharmacol ; 13(7): 1238-1251, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38711252

RESUMO

Adebrelimab, a novel anti-PD-L1 antibody, has been approved by the National Medical Products Administration of China as an intravenous infusion for use in combination with carboplatin and etoposide as first-line treatment for extensive-stage small-cell lung cancer in 2023. A two-compartment model with empirical time-varying CL for adebrelimab was established based on data from 263 patients receiving body weight-based doses from two clinical studies. Significant covariate effects of baseline body weight, albumin levels, tumor size, neutrophil counts, and presence of anti-drug antibodies were identified on CL of debrelimab, none of which were clinically significant or warranted dose adjustment. The degree of decrease in CL was higher in patients who responded to treatment with adebrelimab than in non-responders. Adebrelimab exposures (AUC, Ctrough, or Cmax) were not identified as a statistically significant factor related to efficacy or safety endpoint in the exposure-response analysis. Distribution of simulated exposure metrics from the flat dose regimen (1200 mg q3w) was similar to the marketed weight-based dosing regimen (20 mg/kg q3w), supporting the alternative flat dose regimen in the clinic.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Feminino , Masculino , Idoso , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Adulto , Modelos Biológicos , Carboplatina/administração & dosagem , Carboplatina/farmacocinética , Carboplatina/uso terapêutico , Relação Dose-Resposta a Droga , Etoposídeo/administração & dosagem , Etoposídeo/farmacocinética , Etoposídeo/uso terapêutico , Idoso de 80 Anos ou mais , Infusões Intravenosas
2.
CPT Pharmacometrics Syst Pharmacol ; 13(3): 396-409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044486

RESUMO

Glofitamab is a novel T cell bispecific antibody developed for treatment of relapsed-refractory diffuse large B cell lymphoma and other non-Hodgkin's lymphoma indications. By simultaneously binding human CD20-expressing tumor cells and CD3 on T cells, glofitamab induces tumor cell lysis, in addition to T-cell activation, proliferation, and cytokine release. Here, we describe physiologically-based pharmacokinetic (PBPK) modeling performed to assess the impact of glofitamab-associated transient increases in interleukin 6 (IL-6) on the pharmacokinetics of several cytochrome P450 (CYP) substrates. By refinement of a previously described IL-6 model and inclusion of in vitro CYP suppression data for CYP3A4, CYP1A2, and 2C9, a PBPK model was established in Simcyp to capture the induced IL-6 levels seen when glofitamab is administered at the intended dose and dosing regimen. Following model qualification, the PBPK model was used to predict the potential impact of CYP suppression on exposures of various CYP probe substrates. PBPK analysis predicted that, in the worst-case, the transient elevation of IL-6 would increase exposures of CYP3A4, CYP2C9, and CYP1A2 substrates by less than or equal to twofold. Increases for CYP3A4, CYP2C9, and CYP1A2 substrates were projected to be 1.75, 1.19, and 1.09-fold following the first administration and 2.08, 1.28, and 1.49-fold following repeated administrations. It is recommended that there are no restrictions on concomitant treatment with any other drugs. Consideration may be given for potential drug-drug interaction during the first cycle in patients who are receiving concomitant CYP substrates with a narrow therapeutic index via monitoring for toxicity or for drug concentrations.


Assuntos
Anticorpos Biespecíficos , Citocromo P-450 CYP1A2 , Linfoma não Hodgkin , Humanos , Interleucina-6 , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Interações Medicamentosas , Linfócitos T/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Linfoma não Hodgkin/tratamento farmacológico , Modelos Biológicos
3.
Cancer Chemother Pharmacol ; 91(3): 239-246, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36884068

RESUMO

PURPOSE: Entrectinib is a central nervous system-active potent inhibitor of tropomyosin receptor kinase (TRK), with anti-tumor activity against neurotrophic NTRK gene fusion-positive tumors. This study investigates the pharmacokinetics of entrectinib and its active metabolite (M5) in pediatric patients and aims to understand whether the pediatric dose of 300 mg/m2 once daily (QD) provides an exposure that is consistent with the approved adult dose (600 mg QD). METHODS: Forty-three patients aged from birth to 22 years were administered entrectinib (250-750 mg/m2 QD) orally with food in 4-week cycles. Entrectinib formulations included capsules without acidulant (F1) and capsules with acidulant (F2B and F06). RESULTS: Although there was interpatient variability with F1, entrectinib and M5 exposures increased dose dependently. Lower systemic exposures were observed in pediatric patients receiving 400 mg/m2 QD entrectinib (F1) versus adults receiving either the same dose/formulation or the recommended flat dose of 600 mg QD (~ 300 mg/m2 for a 70 kg adult) due to suboptimal F1 performance in the pediatric study. The observed pediatric exposures following 300 mg/m2 QD entrectinib (F06) were comparable to those in adults receiving 600 mg QD. CONCLUSIONS: Overall, the F1 formulation of entrectinib was associated with lower systemic exposure in pediatric patients compared with the commercial acidulant formulation (F06). Systemic exposures achieved in pediatric patients with the F06 recommended dose (300 mg/m2) were within the known efficacious range in adults, confirming the adequacy of the recommended dose regimen with the commercial formulation.


Assuntos
Neoplasias , Proteínas Tirosina Quinases , Adulto , Humanos , Criança , Inibidores de Proteínas Quinases , Indazóis , Neoplasias/tratamento farmacológico , Neoplasias/patologia
4.
Cancer Chemother Pharmacol ; 89(3): 363-372, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35118559

RESUMO

PURPOSE: Entrectinib is an anti-cancer agent that inhibits TRKA/B/C, ROS1, and ALK. Secondary pharmacokinetic (PK) exposure parameters for entrectinib derived from a previously described population PK model were used to characterize exposure-response relationships in patients treated with entrectinib. METHODS: Data were pooled from Phase 1 and 2 studies of entrectinib (600-800 mg/day in adults, 250-750 mg/m2/day in children) in 293 patients with NTRK-, ROS1-, or ALK-positive, locally advanced or metastatic tumors. Efficacy was evaluated by the changes in sum of target lesion diameters and best overall response defined by RECIST1.1. A longitudinal nonlinear mixed-effect model described the relationship between entrectinib exposure and tumor size data in patients with ROS1-positive non-small-cell lung cancer (NSCLC) or NTRK fusion-positive solid tumors. The relationship between exposure and treatment-emergent (TEAEs) or serious (SAEs) adverse events was assessed by logistic regression in all patients for whom secondary PK parameter estimates were derived. RESULTS: Among the 89 patients with evaluable efficacy data included in the exposure-efficacy analysis, 73% (65/89) achieved a complete or partial response. Entrectinib exposure distribution was similar in responders and non-responders. Model-described tumor shrinkage rates were 8-12 times greater than growth rates in both ROS-1-positive NSCLC patients and NTRK fusion-positive solid tumor patients, with no relationship between exposure and these rates. The probability of experiencing a Grade ≥ 3 TEAE or SAE increased with exposure, primarily at doses > 600 mg/day. CONCLUSION: These analyses supported that entrectinib at 600 mg/day provides an acceptable benefit-risk ratio in adults with NTRK-, ROS1-, or ALK-positive tumors, considered as rare disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Segunda Neoplasia Primária , Adulto , Benzamidas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Criança , Humanos , Indazóis , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases
5.
Invest New Drugs ; 40(1): 68-80, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34417912

RESUMO

Background Entrectinib is a CNS-active, potent inhibitor of tyrosine receptor kinases A/B/C, ROS1 and anaplastic lymphoma kinase approved for use in patients with solid tumors. We describe the in vitro and clinical studies investigating potential entrectinib drug-drug interactions. Methods In vitro studies with human biomaterials assessed the enzymes involved in entrectinib metabolism, and whether entrectinib modulates the activity of the major cytochrome P450 (CYP) enzymes or drug transporter P-glycoprotein. Clinical studies investigated the effect of a strong CYP3A4 inhibitor (itraconazole) and inducer (rifampin) on single-dose entrectinib pharmacokinetics. The effect of entrectinib on sensitive probe substrates for CYP3A4 (midazolam) and P-glycoprotein (digoxin) were also investigated. Results Entrectinib is primarily metabolized by CYP3A4. In vitro, entrectinib is a CYP3A4/5 inhibitor (IC50 2 µM) and a weak CYP3A4 inducer. Entrectinib inhibited P-glycoprotein (IC50 1.33 µM) but is a poor substrate. In healthy subjects, itraconazole increased entrectinib Cmax and AUC by 73% and 504%, respectively, and rifampin decreased entrectinib Cmax and AUC by 56% and 77%, respectively. Single dose entrectinib did not affect midazolam AUC, although Cmax decreased by 34%. Multiple dose entrectinib increased midazolam AUC by 50% and decreased Cmax by 21%. Single dose entrectinib increased digoxin AUC and Cmax by 18% and 28%, respectively, but did not affect digoxin renal clearance. Conclusions Entrectinib is a CYP3A4 substrate and is sensitive to the effects of coadministered moderate/strong CYP3A4 inhibitors and strong inducers, and requires dose adjustment. Entrectinib is a weak inhibitor of CYP3A4 and P-glycoprotein and no dose adjustments are required with CYP3A4/P- glycoprotein substrates.Registration Number (Study 2) NCT03330990 (first posted online November 6, 2017) As studies 1 and 3 are phase 1 trials in healthy subjects, they are not required to be registered.


Assuntos
Antineoplásicos/farmacocinética , Benzamidas/farmacocinética , Indazóis/farmacocinética , Receptores Proteína Tirosina Quinases/farmacocinética , Adulto , Antineoplásicos/farmacologia , Área Sob a Curva , Benzamidas/farmacologia , Indutores do Citocromo P-450 CYP3A/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Feminino , Meia-Vida , Voluntários Saudáveis , Hepatócitos/efeitos dos fármacos , Humanos , Indazóis/farmacologia , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Receptores Proteína Tirosina Quinases/farmacologia
6.
Cancer Chemother Pharmacol ; 88(6): 997-1007, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536094

RESUMO

PURPOSE: Entrectinib (ROZLYTREK®) is a CNS-active, potent, and selective inhibitor of ROS1, TRK A/B/C, and ALK kinase activity. It was recently approved for the treatment of ROS1-positive non-small cell lung cancer and NTRK gene fusion-positive solid tumors. The main objective of this analysis was to characterize the pharmacokinetics (PK) of entrectinib and its main active metabolite, M5. METHODS: A total of 276 cancer patients receiving oral entrectinib were included in the analysis. A model-based population approach was used to characterize the PK profiles of both entities using NONMEM® 7.4. A joint model captures the PK of both entrectinib and M5. The effects of pH modifiers, formulation, weight, age, and sex on model parameters were assessed. Model performance was evaluated using visual predictive checks (VPCs). RESULTS: The absorption of entrectinib was best described using a sequential zero- and first-order absorption model and the disposition with one-compartment model for each entity with linear elimination. Moderate-to-high between-patient variability was estimated in model parameters (from 30.8% for the apparent clearance of entrectinib to 122% for the first-order absorption rate constant). Theory-based allometric scaling using body weight on clearances and volumes and a 28% lower relative bioavailability of the F1 formulation in pediatric patients were retained in the model. The VPC confirmed the good predictive performance of the PopPK model. CONCLUSIONS: A robust population PK model was built and qualified for entrectinib and M5, describing linear PK for both entities. This model was used to support the ROZLYTREK® new drug application.


Assuntos
Benzamidas/administração & dosagem , Benzamidas/farmacocinética , Indazóis/administração & dosagem , Indazóis/farmacocinética , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/patologia , Prognóstico , Distribuição Tecidual , Adulto Jovem
7.
Eur J Drug Metab Pharmacokinet ; 46(6): 779-791, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34495458

RESUMO

BACKGROUND AND OBJECTIVE: Entrectinib is a selective inhibitor of ROS1/TRK/ALK kinases, recently approved for oncology indications. Entrectinib is predominantly cleared by cytochrome P450 (CYP) 3A4, and modulation of CYP3A enzyme activity profoundly alters the pharmacokinetics of both entrectinib and its active metabolite M5. We describe development of a combined physiologically based pharmacokinetic (PBPK) model for entrectinib and M5 to support dosing recommendations when entrectinib is co-administered with CYP3A4 inhibitors or inducers. METHODS: A PBPK model was established in Simcyp® Simulator. The initial model based on in vitro-in vivo extrapolation was refined using sensitivity analysis and non-linear mixed effects modeling to optimize parameter estimates and to improve model fit to data from a clinical drug-drug interaction study with the strong CYP3A4 inhibitor, itraconazole. The model was subsequently qualified against clinical data, and the final qualified model used to simulate the effects of moderate to strong CYP3A4 inhibitors and inducers on entrectinib and M5 pharmacokinetics. RESULTS: The final model showed good predictive performance for entrectinib and M5, meeting commonly used predictive performance acceptance criteria in each case. The model predicted that co-administration of various moderate CYP3A4 inhibitors (verapamil, erythromycin, clarithromycin, fluconazole, and diltiazem) would result in an average increase in entrectinib exposure between 2.2- and 3.1-fold, with corresponding average increases for M5 of approximately 2-fold. Co-administration of moderate CYP3A4 inducers (efavirenz, carbamazepine, phenytoin) was predicted to result in an average decrease in entrectinib exposure between 45 and 79%, with corresponding average decreases for M5 of approximately 50%. CONCLUSIONS: The model simulations were used to derive dosing recommendations for co-administering entrectinib with CYP3A4 inhibitors or inducers. PBPK modeling has been used in lieu of clinical studies to enable regulatory decision-making.


Assuntos
Benzamidas/metabolismo , Benzamidas/farmacocinética , Indazóis/metabolismo , Indazóis/farmacocinética , Simulação por Computador , Indutores do Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Interações Medicamentosas/fisiologia , Humanos
8.
Invest New Drugs ; 39(3): 803-811, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33462752

RESUMO

BACKGROUND: Entrectinib is an oral, CNS-active, potent inhibitor of tyrosine receptor kinases A/B/C, tyrosine kinase ROS proto-oncogene 1, and anaplastic lymphoma kinase approved for use in patients with solid tumors. We describe 3 clinical studies, including one investigating the single/multiple dose pharmacokinetics of entrectinib in patients and two studies in healthy volunteers investigating the absorption/distribution/metabolism/excretion (ADME) of entrectinib, its relative bioavailability, and effect of food on pharmacokinetics. METHODS: The patient study is open-label with dose-escalation and expansion phases. Volunteers received entrectinib (100-400 mg/m2, and 600-800 mg) once daily with food in continuous 28-day cycles. In the ADME study, volunteers received a single oral dose of [14C]entrectinib 600 mg. In the third study, volunteers received single doses of entrectinib 600 mg as the research and marketed formulations in the fasted state (Part 1), and the marketed formulation in the fed and fasted states (Part 2). Entrectinib and its major active metabolite M5 were assessed in all studies. RESULTS: Entrectinib was absorbed in a dose-dependent manner with maximum concentrations at ~4 h postdose and an elimination half-life of ~20 h. Entrectinib was cleared mainly through metabolism and both entrectinib and metabolites were eliminated mainly in feces (minimal renal excretion). At steady-state, the M5-to-entrectinib AUC ratio was 0.5 (with 600 mg entrectinib research formulation in patients). The research and marketed formulations were bioequivalent and food had no relevant effect on pharmacokinetics. CONCLUSIONS: Entrectinib is well absorbed, with linear PK that is suitable for once-daily dosing, and can be taken with or without food.


Assuntos
Antineoplásicos/farmacocinética , Benzamidas/farmacocinética , Indazóis/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Adulto , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Antineoplásicos/urina , Benzamidas/administração & dosagem , Benzamidas/sangue , Benzamidas/urina , Cápsulas , Estudos Cross-Over , Jejum/metabolismo , Fezes/química , Feminino , Interações Alimento-Droga , Voluntários Saudáveis , Humanos , Indazóis/administração & dosagem , Indazóis/sangue , Indazóis/urina , Masculino , Pessoa de Meia-Idade , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/urina , Equivalência Terapêutica , Adulto Jovem
9.
AAPS J ; 22(4): 78, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32458089

RESUMO

Entrectinib is a potent and selective tyrosine kinase inhibitor (TKI) of TRKA/B/C, ROS1, and ALK with both systemic and CNS activities, which has recently received FDA approval for ROS1 fusion-positive non-small cell lung cancer and NTRK fusion-positive solid tumors. This paper describes the application of a physiologically based biophamaceutics modeling (PBBM) during clinical development to understand the impact of food and gastric pH changes on absorption of this lipophilic, basic, molecule with reasonable permeability but strongly pH-dependent solubility. GastroPlus™ was used to develop a physiologically based pharmacokinetics (PBPK) model integrating in vitro and in silico data and dissolution studies and in silico modelling in DDDPlus™ were used to understand the role of self-buffering and acidulant on formulation performance. Models were verified by comparison of simulated pharmacokinetics for acidulant and non-acidulant containing formulations to clinical data from a food effect study and relative bioavailability studies with and without the gastric acid-reducing agent lansoprazole. A negligible food effect and minor pH-dependent drug-drug interaction for the market formulation were predicted based on biorelevant in vitro measurements, dissolution studies, and in silico modelling and were confirmed in clinical studies. These outcomes were explained as due to the acidulant counteracting entrectinib self-buffering and greatly reducing the effect of gastric pH changes. Finally, sensitivity analyses with the verified model were applied to support drug product quality. PBBM has great potential to streamline late-stage drug development and may have impact on regulatory questions.


Assuntos
Benzamidas/farmacocinética , Interações Alimento-Droga/fisiologia , Absorção Gástrica/fisiologia , Mucosa Gástrica/metabolismo , Indazóis/farmacocinética , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacocinética , Adulto , Benzamidas/metabolismo , Feminino , Alimentos , Absorção Gástrica/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Indazóis/metabolismo , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA