Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628937

RESUMO

Cytokine-inducible SH2 domain-containing protein (CISH) is a member of the suppressor of cytokine signaling (SOCS) family of negative feedback regulators shown to play crucial roles in lymphoid cell development and function as well as appetite regulation. It has also been implicated in the control of signaling downstream of the receptors for the cytokines granulocyte/macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) in myeloid cells. To investigate the physiological role of CISH in myelopoiesis, mice deficient in CISH were analyzed basally and in response to administration of these cytokines. CISH knockout (KO) mice possessed basally elevated neutrophils in the blood, bone marrow, and spleen compared to wild-type (WT) mice. During GM-CSF-induced myelopoiesis, the frequency of neutrophils, myeloid dendritic cells (DCs), and CFU-M in the bone marrow was higher in the KO, as were the neutrophils and CFU-G in the spleen. In contrast, no differences were observed between KO and WT mice during G-CSF-induced myelopoiesis apart from an elevated frequency of CFU-G and CFU-M in the spleen. This work has identified a role for CISH in the negative regulation of granulopoiesis, including that mediated by GM-CSF.


Assuntos
Citocinas , Proteínas Supressoras da Sinalização de Citocina , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Mielopoese , Domínios de Homologia de src , Proteínas Supressoras da Sinalização de Citocina/metabolismo
2.
Inflamm Res ; 65(1): 71-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26608498

RESUMO

OBJECTIVE AND DESIGN: Our aim was to study whether an extracellular, oxidative antimicrobial mechanism inherent to tracheal epithelial cells is capable of inactivating influenza H1N2 virus. MATERIAL OR SUBJECTS: Epithelial cells were isolated from tracheas of male Sprague-Dawley rats. Both primary human and rat tracheobronchial epithelial cells were differentiated in air-liquid interface cultures. TREATMENT: A/swine/Illinois/02860/09 (swH1N2) influenza A virions were added to the apical side of airway cells for 1 h in the presence or absence of lactoperoxidase or thiocyanate. METHODS: Characterization of rat epithelial cells (morphology, Duox expression) occurred via western blotting, PCR, hydrogen peroxide production measurement and histology. The number of viable virions was determined by plaque assays. Statistical difference of the results was analyzed by ANOVA and Tukey's test. RESULTS: Our data show that rat tracheobronchial epithelial cells develop a differentiated, polarized monolayer with high transepithelial electrical resistance, mucin production and expression of dual oxidases. Influenza A virions are inactivated by human and rat epithelial cells via a dual oxidase-, lactoperoxidase- and thiocyanate-dependent mechanism. CONCLUSIONS: Differentiated air-liquid interface cultures of rat tracheal epithelial cells provide a novel model to study airway epithelium-influenza interactions. The dual oxidase/lactoperoxidase/thiocyanate extracellular oxidative system producing hypothiocyanite is a fast and potent anti-influenza mechanism inactivating H1N2 viruses prior to infection of the epithelium.


Assuntos
Células Epiteliais/metabolismo , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Tiocianatos/metabolismo , Animais , Cães , Humanos , Peróxido de Hidrogênio/metabolismo , Lactoperoxidase/metabolismo , Células Madin Darby de Rim Canino , Masculino , Mucinas/biossíntese , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/citologia
3.
PLoS One ; 9(10): e110264, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330303

RESUMO

Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼ 80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-ß and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection.


Assuntos
Brônquios/citologia , RNA Polimerases Dirigidas por DNA/metabolismo , Células Epiteliais/virologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Animais , Diferenciação Celular , Cães , Células Epiteliais/citologia , Feminino , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/genética , Células Madin Darby de Rim Canino , Vírus Reordenados/enzimologia , Vírus Reordenados/genética , Vírus Reordenados/fisiologia , Especificidade da Espécie , Suínos , Replicação Viral
4.
PLoS One ; 8(7): e70251, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23875024

RESUMO

Swine generate reassortant influenza viruses because they can be simultaneously infected with avian and human influenza; however, the features that restrict influenza reassortment in swine and human hosts are not fully understood. Type I and III interferons (IFNs) act as the first line of defense against influenza virus infection of respiratory epithelium. To determine if human and swine have different capacities to mount an antiviral response the expression of IFN and IFN-stimulated genes (ISG) in normal human bronchial epithelial (NHBE) cells and normal swine bronchial epithelial (NSBE) cells was evaluated following infection with human (H3N2), swine (H1N1), and avian (H5N3, H5N2, H5N1) influenza A viruses. Expression of IFNλ and ISGs were substantially higher in NHBE cells compared to NSBE cells following H5 avian influenza virus infection compared to human or swine influenza virus infection. This effect was associated with reduced H5 avian influenza virus replication in human cells at late times post infection. Further, RIG-I expression was lower in NSBE cells compared to NHBE cells suggesting reduced virus sensing. Together, these studies identify key differences in the antiviral response between human and swine respiratory epithelium alluding to differences that may govern influenza reassortment.


Assuntos
Brônquios/imunologia , Células Epiteliais/imunologia , Imunidade Celular/fisiologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Adolescente , Animais , Brônquios/virologia , Células Cultivadas , Células Epiteliais/virologia , Humanos , Masculino , Cultura Primária de Células , Mucosa Respiratória/imunologia , Suínos , Doenças dos Suínos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA