Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640016

RESUMO

Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.


Assuntos
Homeostase , Ferro , Neoplasias , Humanos , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Ferroptose , Ferro/metabolismo , Proteína 1 Reguladora do Ferro , Neoplasias/metabolismo , Neoplasias/genética , Ligação Proteica , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética
2.
Biochim Biophys Acta Biomembr ; 1866(4): 184306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408697

RESUMO

Human copper transporters ATP7B and ATP7A deliver copper to biosynthetic pathways and maintain copper homeostasis in the cell. These enzymes combine several challenges for structural biology because they are large low abundance membrane proteins with many highly mobile domains and long disordered loops. No method has yet succeeded in solving the structure of the complete fully functional protein. Still, X-ray crystallography, Cryo-EM and NMR helped to piece together a structure based model of the enzyme activity and regulation by copper. We review the structures of ATP7B and ATP7A with an emphasis on the mechanistic insights into the unique aspects of the transport function and regulation of the human copper ATPases that have emerged from more than twenty years of research.


Assuntos
Proteínas de Transporte de Cátions , Cobre , Humanos , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Cobre/química , Proteínas de Transporte de Cátions/metabolismo , Homeostase
3.
Biophys J ; 120(20): 4600-4607, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34461106

RESUMO

ATP7A and ATP7B are structurally similar but functionally distinct active copper transporters that regulate copper levels in the human cells and deliver copper to the biosynthetic pathways. Both proteins have a chain of six cytosolic metal-binding domains (MBDs) believed to be involved in the copper-dependent regulation of the activity and intracellular localization of these enzymes. Although all the MBDs are quite similar in structure, their spacing differs markedly between ATP7A and ATP7B. We show by NMR that the long polypeptide between MBD1 and MBD2 of ATP7A forms an additional seventh metastable domain, which we called HMA1A (heavy metal associated domain 1A). The structure of HMA1A resembles the MBDs but contains no copper-binding site. The HMA1A domain, which is unique to ATP7A, may modulate regulatory interactions between MBD1-3, contributing to the distinct functional properties of ATP7A and ATP7B.


Assuntos
ATPases Transportadoras de Cobre , Cobre , Sítios de Ligação , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Humanos , Domínios Proteicos
4.
J Biol Chem ; 296: 100085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33199368

RESUMO

The K-homology (KH) domain is a nucleic acid-binding domain present in many proteins. Recently, we found that the DEAD-box helicase DDX43 contains a KH domain in its N-terminus; however, its function remains unknown. Here, we purified recombinant DDX43 KH domain protein and found that it prefers binding ssDNA and ssRNA. Electrophoretic mobility shift assay and NMR revealed that the KH domain favors pyrimidines over purines. Mutational analysis showed that the GXXG loop in the KH domain is involved in pyrimidine binding. Moreover, we found that an alanine residue adjacent to the GXXG loop is critical for binding. Systematic evolution of ligands by exponential enrichment, chromatin immunoprecipitation-seq, and cross-linking immunoprecipitation-seq showed that the KH domain binds C-/T-rich DNA and U-rich RNA. Bioinformatics analysis suggested that the KH domain prefers to bind promoters. Using 15N-heteronuclear single quantum coherence NMR, the optimal binding sequence was identified as TTGT. Finally, we found that the full-length DDX43 helicase prefers DNA or RNA substrates with TTGT or UUGU single-stranded tails and that the KH domain is critically important for sequence specificity and unwinding processivity. Collectively, our results demonstrated that the KH domain facilitates the substrate specificity and processivity of the DDX43 helicase.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Biologia Computacional , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Humanos , Estabilidade Proteica , Purinas/química , Purinas/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Técnica de Seleção de Aptâmeros , Especificidade por Substrato
5.
Metallomics ; 12(12): 1941-1950, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33094790

RESUMO

Nanobodies are genetically engineered single domain antibodies derived from the unusual heavy-chain only antibodies found in llamas and camels. The small size of the nanobodies and flexible selection schemes make them uniquely versatile tools for protein biochemistry and cell biology. We have developed a panel of nanobodies against the metal binding domains of the human copper transporter ATP7B, a multidomain membrane protein with a complex regulation of enzymatic activity and intracellular localization. To enable the use of the nanobodies as tools to investigate copper transport in the cell, we characterized their binding sites and affinity by isothermal titration calorimetry and NMR. We have identified nanobodies against each of the first four metal binding domains of ATP7B, with a wide affinity range, as evidenced by dissociation constants from below 10-9 to 10-6 M. We found both the inhibitory and activating nanobodies among those tested. The diverse properties of the nanobodies make the panel useful for the structural studies of ATP7B, immunoaffinity purification of the protein, modulation of its activity in the cell, protein dynamics studies, and as mimics of copper chaperone ATOX1, the natural interaction partner of ATP7B.


Assuntos
ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Anticorpos de Domínio Único/farmacologia , Sítios de Ligação/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , ATPases Transportadoras de Cobre/química , Humanos , Simulação de Acoplamento Molecular , Domínios Proteicos/efeitos dos fármacos
6.
Sci Rep ; 8(1): 11361, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054535

RESUMO

ATP synthase is powered by the flow of protons through the molecular turbine composed of two α-helical integral membrane proteins, subunit a, which makes a stator, and a cylindrical rotor assembly made of multiple copies of subunit c. Transient protonation of a universally conserved carboxylate on subunit c (D61 in E. coli) gated by the electrostatic interaction with arginine on subunit a (R210 in E. coli) is believed to be a crucial step in proton transfer across the membrane. We used a fusion protein consisting of subunit a and the adjacent helices of subunit c to test by NMR spectroscopy if cD61 and aR210 are involved in an electrostatic interaction with each other, and found no evidence of such interaction. We have also determined that R140 does not form a salt bridge with either D44 or D124 as was suggested previously by mutation analysis. Our results demonstrate the potential of using arginines as NMR reporter groups for structural and functional studies of challenging membrane proteins.


Assuntos
Modelos Moleculares , Engenharia de Proteínas , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Sais/química , Arginina/química , Ácido Aspártico/química , Escherichia coli/enzimologia , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
7.
Sci Rep ; 8(1): 581, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330485

RESUMO

Copper-transporter ATP7B maintains copper homeostasis in the human cells and delivers copper to the biosynthetic pathways for incorporation into the newly synthesized copper-containing proteins. ATP7B is a target of several hundred mutations that lead to Wilson disease, a chronic copper toxicosis. ATP7B contains a chain of six cytosolic metal-binding domains (MBDs), the first four of which (MBD1-4) are believed to be regulatory, and the last two (MBD5-6) are required for enzyme activity. We report the NMR structure of MBD1, the last unsolved metal-binding domain of ATP7B. The structure reveals the disruptive mechanism of G85V mutation, one of the very few disease causing missense mutations in the MBD1-4 region of ATP7B.


Assuntos
ATPases Transportadoras de Cobre/química , ATPases Transportadoras de Cobre/genética , Degeneração Hepatolenticular/genética , Mutação de Sentido Incorreto , Sítios de Ligação , Cobre/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos
8.
J Biol Chem ; 292(44): 18169-18177, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28900031

RESUMO

The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo-Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions.


Assuntos
ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Metalochaperonas/metabolismo , Modelos Moleculares , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Proteínas de Transporte de Cobre , ATPases Transportadoras de Cobre/química , ATPases Transportadoras de Cobre/genética , Ativação Enzimática , Estabilidade Enzimática , Humanos , Metalochaperonas/química , Metalochaperonas/genética , Chaperonas Moleculares , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Espalhamento a Baixo Ângulo , Solubilidade , Difração de Raios X
9.
Biochemistry ; 56(24): 3129-3141, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28549213

RESUMO

Copper is an essential nutrient required for many biological processes involved in primary metabolism, but free copper is toxic due to its ability to catalyze formation of free radicals. To prevent toxic effects, in the cell copper is bound to proteins and low molecular weight compounds, such as glutathione, at all times. The widely used chemotherapy agent cisplatin is known to bind to copper-transporting proteins, including copper chaperone Atox1. Cisplatin interactions with Atox1 and other copper transporters are linked to cancer resistance to platinum-based chemotherapy. Here we analyze the binding of copper and cisplatin to Atox1 in the presence of glutathione under redox conditions that mimic intracellular environment. We show that copper(I) and glutathione form large polymers with a molecular mass of approximately 8 kDa, which can transfer copper to Atox1. Cisplatin also can form polymers with glutathione, albeit at a slower rate. Analysis of simultaneous binding of copper and cisplatin to Atox1 under physiological conditions shows that both metals are bound to the protein through copper-sulfur-platinum bridges.


Assuntos
Cisplatino/metabolismo , Cobre/metabolismo , Glutationa/metabolismo , Metalochaperonas/metabolismo , Platina/metabolismo , Enxofre/metabolismo , Sítios de Ligação , Cisplatino/química , Cobre/química , Proteínas de Transporte de Cobre , Glutationa/química , Metalochaperonas/química , Metalochaperonas/isolamento & purificação , Chaperonas Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Método de Monte Carlo , Oxirredução , Platina/química , Enxofre/química
10.
IUBMB Life ; 69(4): 226-235, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28271598

RESUMO

Copper transporters ATP7A and ATP7B regulate copper levels in the human cells and deliver copper to the biosynthetic pathways. ATP7A and ATP7B belong to the P-type ATPases and share much of the domain architecture and the mechanism of ATP hydrolysis with the other, well-studied, enzymes of this type. A unique structural feature of the copper ATPases is the chain of six cytosolic metal-binding domains (MBDs), which are believed to be involved in copper-dependent regulation of the activity and intracellular localization of these enzymes. Although the structures of all the MBDs have been solved, the mechanism of copper-dependent regulation of ATP7B and ATP7A, the roles of individual MBDs, and the relationship between the regulatory and catalytic copper binding are still unknown. We describe the structure and dynamics of the MBDs, review the current knowledge about their functional roles and propose a mechanism of regulation of ATP7B by copper-dependent changes in the dynamics and conformation of the MBD chain. Transient interactions between the MBDs, rather than transitions between distinct static conformations are likely to form the structural basis of regulation of the ATP-dependent copper transporters in human cells. © 2016 IUBMB Life, 69(4):226-235, 2017.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Transporte de Cátions/química , Cobre/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/química , ATPases Transportadoras de Cobre , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Conformação Proteica , Domínios Proteicos/genética
11.
J Biol Chem ; 289(47): 32682-93, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25253690

RESUMO

The biologically and clinically important membrane transporters are challenging proteins to study because of their low level of expression, multidomain structure, and complex molecular dynamics that underlies their activity. ATP7B is a copper transporter that traffics between the intracellular compartments in response to copper elevation. The N-terminal domain of ATP7B (N-ATP7B) is involved in binding copper, but the role of this domain in trafficking is controversial. To clarify the role of N-ATP7B, we generated nanobodies that interact with ATP7B in vitro and in cells. In solution NMR studies, nanobodies revealed the spatial organization of N-ATP7B by detecting transient functionally relevant interactions between metal-binding domains 1-3. Modulation of these interactions by nanobodies in cells enhanced relocalization of the endogenous ATP7B toward the plasma membrane linking molecular and cellular dynamics of the transporter. Stimulation of ATP7B trafficking by nanobodies in the absence of elevated copper provides direct evidence for the important role of N-ATP7B structural dynamics in regulation of ATP7B localization in a cell.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Anticorpos de Domínio Único/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Western Blotting , Camelídeos Americanos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Cobre/química , ATPases Transportadoras de Cobre , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética
12.
Biochem J ; 454(1): 147-56, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23751120

RESUMO

Human copper transporters ATP7B (Wilson's disease protein) and ATP7A (Menkes' disease protein) have been implicated in tumour resistance to cisplatin, a widely used anticancer drug. Cisplatin binds to the copper-binding sites in the N-terminal domain of ATP7B, and this binding may be an essential step of cisplatin detoxification involving copper ATPases. In the present study, we demonstrate that cisplatin and a related platinum drug carboplatin produce the same adduct following reaction with MBD2 [metal-binding domain (repeat) 2], where platinum is bound to the side chains of the cysteine residues in the CxxC copper-binding motif. This suggests the same mechanism for detoxification of both drugs by ATP7B. Platinum can also be transferred to MBD2 from copper chaperone Atox1, which was shown previously to bind cisplatin. Binding of the free cisplatin and reaction with the cisplatin-loaded Atox1 produce the same protein-bound platinum intermediate. Transfer of platinum along the copper-transport pathways in the cell may serve as a mechanism of drug delivery to its target in the cell nucleus, and explain tumour-cell resistance to cisplatin associated with the overexpression of copper transporters ATP7B and ATP7A.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Transporte de Cátions/química , Cisplatino/química , Cobre/química , Metalochaperonas/química , Adenosina Trifosfatases/metabolismo , Sítios de Ligação/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Cisplatino/metabolismo , Cobre/metabolismo , Proteínas de Transporte de Cobre , ATPases Transportadoras de Cobre , Humanos , Metalochaperonas/metabolismo , Chaperonas Moleculares , Sequências Repetitivas de Aminoácidos/fisiologia , Espectroscopia por Absorção de Raios X
13.
J Biol Chem ; 287(43): 36041-50, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22898812

RESUMO

The copper-transporting ATPase ATP7B has a dual intracellular localization: the trans-Golgi network (TGN) and cytosolic vesicles. Changes in copper levels, kinase-mediated phosphorylation, and mutations associated with Wilson disease alter the steady-state distribution of ATP7B between these compartments. To identify a primary molecular event that triggers ATP7B exit from the TGN, we characterized the folding, activity, and trafficking of the ATP7B variants with mutations within the regulatory N-terminal domain (N-ATP7B). We found that structural changes disrupting the inter-domain contacts facilitate ATP7B exit from the TGN. Mutating Ser-340/341 in the N-ATP7B individually or together to Ala, Gly, Thr, or Asp produced active protein and shifted the steady-state localization of ATP7B to vesicles, independently of copper levels. The Ser340/341G mutant had a lower kinase-mediated phosphorylation under basal conditions and no copper-dependent phosphorylation. Thus, negative charges introduced by copper-dependent phosphorylation are not obligatory for ATP7B trafficking from the TGN. The Ser340/341A mutation did not alter the overall fold of N-ATP7B, but significantly decreased interactions with the nucleotide-binding domain, mimicking consequences of copper binding to N-ATP7B. We propose that structural changes that specifically alter the inter-domain contacts initiate exit of ATP7B from the TGN, whereas increased phosphorylation may be needed to maintain an open interface between the domains.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Vesículas Transportadoras/metabolismo , Rede trans-Golgi/metabolismo , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Proteínas de Transporte de Cátions/genética , ATPases Transportadoras de Cobre , Células HEK293 , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Humanos , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Vesículas Transportadoras/genética , Rede trans-Golgi/genética
14.
Protein Sci ; 21(2): 279-88, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22162071

RESUMO

NMR structure determination of large membrane proteins is hampered by broad spectral lines, overlap, and ambiguity of signal assignment. Chemical shift and NOE assignment can be facilitated by amino acid selective isotope labeling in cell-free protein synthesis system. However, many biological detergents are incompatible with the cell-free synthesis, and membrane proteins often have to be synthesized in an insoluble form. We report cell-free synthesis of subunits a and c of the proton channel of Escherichia coli ATP synthase in a soluble form in a mixture of phosphatidylcholine derivatives. In comparison, subunit a was purified from the cell-free system and from the bacterial cell membranes. NMR spectra of both preparations were similar, indicating that our procedure for cell-free synthesis produces protein structurally similar to that prepared from the cell membranes.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/biossíntese , Dobramento de Proteína , ATPases Translocadoras de Prótons/biossíntese , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/metabolismo , Membrana Celular/química , Sistema Livre de Células/enzimologia , Sistema Livre de Células/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Micelas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosfolipídeos/química , Fosfolipídeos/farmacologia , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína , Subunidades Proteicas/biossíntese , Subunidades Proteicas/química , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo
15.
J Biol Chem ; 286(44): 38583-38591, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21900248

RESUMO

Subunit a is the main part of the membrane stator of the ATP synthase molecular turbine. Subunit c is the building block of the membrane rotor. We have generated two molecular fusions of a and c subunits with different orientations of the helical hairpin of subunit c. The a/c fusion protein with correct orientation of transmembrane helices was inserted into the membrane, and co-incorporated into the F(0) complex of ATP synthase with wild type subunit c. The fused c subunit was incorporated into the c-ring tethering the ATP synthase rotor to the stator. The a/c fusion with incorrect orientation of the c-helices required wild type subunit c for insertion into the membrane. In this case, the fused c subunit remained on the periphery of the c-ring and did not interfere with rotor movement. Wild type subunit a inserted into the membrane equally well with wild type subunit c and c-ring assembly mutants that remained monomeric in the membrane. These results show that interaction with monomeric subunit c triggers insertion of subunit a into the membrane, and initiates formation of the a-c complex, the ion-translocating module of the ATP synthase. Correct assembly of the ATP synthase incorporating topologically correct fusion of subunits a and c validates using this model protein for high resolution structural studies of the ATP synthase proton channel.


Assuntos
Adenosina Trifosfatases/química , ATPases Bacterianas Próton-Translocadoras/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , ATPases Translocadoras de Prótons/química , Transporte Biológico , Catálise , Membrana Celular/metabolismo , Conformação Molecular , Plasmídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Prótons , Proteínas Recombinantes de Fusão/química
16.
Biochem Cell Biol ; 89(2): 138-47, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21455266

RESUMO

The Wilson disease protein (ATP7B) is a copper-transporting ATPase that is responsible for regulating copper homeostasis in human tissues. ATP7B is associated with cancer resistance to cisplatin, one of the most widely used anticancer drugs. This minireview discusses the possible mechanisms of tumor resistance to cisplatin mediated by ATP7B. Cisplatin binds to the N-terminal cytosolic domain of ATP7B, which contains multiple copper-binding sites. Active platinum efflux catalyzed by ATP7B is unlikely to significantly contribute to cisplatin resistance in vivo. Transient platinum sequestration in the metal-binding domain followed by transfer to an acceptor protein or a low molecular weight compound is proposed as an alternative mechanism of cisplatin detoxification in the cell.


Assuntos
Adenosina Trifosfatases/metabolismo , Antineoplásicos/uso terapêutico , Proteínas de Transporte de Cátions/metabolismo , Cisplatino/uso terapêutico , Cobre/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sítios de Ligação , Transporte Biológico , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , ATPases Transportadoras de Cobre , Humanos , Modelos Moleculares , Estrutura Molecular , Platina/metabolismo , Ligação Proteica
17.
J Biol Chem ; 286(18): 16355-62, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21398519

RESUMO

Wilson disease (WD) is a disorder of copper metabolism caused by mutations in the Cu-transporting ATPase ATP7B. WD is characterized by significant phenotypic variability, the molecular basis of which is poorly understood. The E1064A mutation in the N-domain of ATP7B was previously shown to disrupt ATP binding. We have now determined, by NMR, the structure of the N-domain containing this mutation and compared properties of E1064A and H1069Q, another mutant with impaired ATP binding. The E1064A mutation does not change the overall fold of the N-domain. However, the position of the α1,α2-helical hairpin (α-HH) that houses Glu(1064) and His(1069) is altered. The α-HH movement produces a more open structure compared with the wild-type ATP-bound form and misaligns ATP coordinating residues, thus explaining complete loss of ATP binding. In the cell, neither the stability nor targeting of ATP7B-E1064A to the trans-Golgi network differs significantly from the wild type. This is in a contrast to the H1069Q mutation within the same α-HH, which greatly destabilizes protein both in vitro and in cells. The difference between two mutants can be linked to a lower stability of the α-HH in the H1069Q variant at the physiological temperature. We conclude that the structural stability of the N-domain rather than the loss of ATP binding plays a defining role in the ability of ATP7B to reach the trans-Golgi network, thus contributing to phenotypic variability in WD.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas de Transporte de Cátions/química , Mutação de Sentido Incorreto , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , ATPases Transportadoras de Cobre , Células HEK293 , Degeneração Hepatolenticular/enzimologia , Degeneração Hepatolenticular/genética , Humanos , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Rede trans-Golgi/enzimologia , Rede trans-Golgi/genética
18.
Proc Natl Acad Sci U S A ; 108(13): 5390-5, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21406592

RESUMO

In human disorders, the genotype-phenotype relationships are often complex and influenced by genetic and/or environmental factors. Wilson disease (WD) is a monogenic disorder caused by mutations in the copper-transporting P-type ATPase ATP7B. WD shows significant phenotypic diversity even in patients carrying identical mutations; the basis for such diverse manifestations is unknown. We demonstrate that the 2623A/G polymorphism (producing the Gly(875) → Arg substitution in the A-domain of ATP7B) drastically alters the intracellular properties of ATP7B, whereas copper reverses the effects. Under basal conditions, the common Gly(875) variant of ATP7B is targeted to the trans-Golgi network (TGN) and transports copper into the TGN lumen. In contrast, the Arg(875) variant is located in the endoplasmic reticulum (ER) and does not deliver copper to the TGN. Elevated copper corrects the ATP7B-Arg(875) phenotype. Addition of only 0.5-5 µM copper triggers the exit of ATP7B-Arg(875) from the ER and restores copper delivery to the TGN. Analysis of the recombinant A-domains by NMR suggests that the ER retention of ATP7B-Arg(875) is attributable to increased unfolding of the Arg(875)-containing A-domain. Copper is not required for the folding of ATP7B-Arg(875) during biosynthesis, but it stabilizes protein and stimulates its activity. A chemotherapeutical drug, cisplatin, that mimics a copper-bound state of ATP7B also corrects the "disease-like" phenotype of ATP7B-Arg(875) and promotes its TGN targeting and transport function. We conclude that in populations harboring the Arg(875) polymorphism, the levels of bioavailable copper may play a vital role in the manifestations of WD.


Assuntos
Adenosina Trifosfatases/genética , Arginina/genética , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , Fenótipo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , ATPases Transportadoras de Cobre , Retículo Endoplasmático/metabolismo , Humanos , Modelos Moleculares , Polimorfismo Genético , Conformação Proteica , Rede trans-Golgi/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-19478447

RESUMO

Wilson disease associated protein (ATP7B) is essential for copper transport in human cells. Mutations that affect ATP7B function result in Wilson's disease, a chronic copper toxicosis. Disease-causing mutations within the N-domain of ATP7B (WND) are known to disrupt ATP binding, but a high-resolution X-ray structure of the ATP-binding site has not been reported. The N-domain was modified to delete the disordered loop comprising residues His1115-Asp1138 (WNDDelta(1115-1138)). Unlike the wild-type N-domain, WNDDelta(1115-1138) formed good-quality crystals. Synchrotron diffraction data have been collected from WNDDelta(1115-1138) at the Canadian Light Source. A native WNDDelta(1115-1138) crystal diffracted to 1.7 A resolution and belonged to space group P4(2)2(1)2, with unit-cell parameters a = 39.2, b = 39.2, c = 168.9 A. MAD data were collected to 2.7 A resolution from a SeMet-derivative crystal with unit-cell parameters a = 38.4, b = 38.4, c = 166.7 A. The WNDDelta(1115-1138) structure is likely to be solved by phasing from multiwavelength anomalous diffraction (MAD) experiments.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Transporte de Cátions/química , Cobre/química , Cristalografia por Raios X , Difração de Raios X , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/isolamento & purificação , Proteínas de Transporte de Cátions/metabolismo , Sequência Conservada , Cobre/metabolismo , ATPases Transportadoras de Cobre , Cristalização , Coleta de Dados , Escherichia coli/genética , Degeneração Hepatolenticular/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Estatística como Assunto , Síncrotrons , Transformação Bacteriana
20.
Biochem J ; 419(1): 51-6, 3 p following 56, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19173677

RESUMO

Wilson disease ATPase (ATP7B) has been implicated in the resistance of cancer cells to cisplatin. Using a simple in vivo assay in bacterial culture, in the present study we demonstrate that ATP7B can confer resistance to cisplatin by sequestering the drug in its N-terminal metal-binding domain without active drug extrusion from the cell. Expression of a protein fragment containing four N-terminal MBRs (metal-binding repeats) of ATP7B (MBR1-4) protects cells from the toxic effects of cisplatin. One MBR1-4 molecule binds up to three cisplatin molecules at the copper-binding sites in the MBRs. The findings of the present study suggest that suppressing enzymatic activity of ATP7B may not be an effective way of combating cisplatin resistance. Rather, the efforts should be directed at preventing cisplatin binding to the protein.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cisplatino/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sítios de Ligação , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Cisplatino/farmacologia , ATPases Transportadoras de Cobre , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Degeneração Hepatolenticular/metabolismo , Microscopia de Interferência , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA