Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Nanobiotechnology ; 22(1): 419, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014410

RESUMO

BACKGROUND: Iron oxide nanoparticles (IONPs) have been cleared by the Food and Drug Administration (FDA) for various clinical applications, such as tumor-targeted imaging, hyperthermia therapy, drug delivery, and live-cell tracking. However, the application of IONPs as T1 contrast agents has been restricted due to their high r2 values and r2/r1 ratios, which limit their effectiveness in T1 contrast enhancement. Notably, IONPs with diameters smaller than 5 nm, referred to as extremely small-sized IONPs (ESIONs), have demonstrated potential in overcoming these limitations. To advance the clinical application of ESIONs as T1 contrast agents, we have refined a scale-up process for micelle encapsulation aimed at improving the hydrophilization of ESIONs, and have carried out comprehensive in vivo biodistribution and preclinical toxicity assessments. RESULTS: The optimization of the scale-up micelle-encapsulation process, specifically employing Tween60 at a concentration of 10% v/v, resulted in ESIONs that were uniformly hydrophilized, with an average size of 9.35 nm and a high purification yield. Stability tests showed that these ESIONs maintained consistent size over extended storage periods and dispersed effectively in blood and serum-mimicking environments. Relaxivity measurements indicated an r1 value of 3.43 mM- 1s- 1 and a favorable r2/r1 ratio of 5.36, suggesting their potential as T1 contrast agents. Biodistribution studies revealed that the ESIONs had extended circulation times in the bloodstream and were primarily cleared via the hepatobiliary route, with negligible renal excretion. We monitored blood clearance and organ distribution using positron emission tomography and magnetic resonance imaging (MRI). Additionally, MRI signal variations in a dose-dependent manner highlighted different behaviors at varying ESIONs concentrations, implying that optimal dosages might be specific to the intended imaging application. Preclinical safety evaluations indicated that ESIONs were tolerable in rats at doses up to 25 mg/kg. CONCLUSIONS: This study effectively optimized a scale-up process for the micelle encapsulation of ESIONs, leading to the production of hydrophilic ESIONs at gram-scale levels. These optimized ESIONs showcased properties conducive to T1 contrast imaging, such as elevated r1 relaxivity and a reduced r2/r1 ratio. Biodistribution study underscored their prolonged bloodstream presence and efficient clearance through the liver and bile, without significant renal involvement. The preclinical toxicity tests affirmed the safety of the ESIONs, supporting their potential use as T1 contrast agent with versatile clinical application.


Assuntos
Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Micelas , Tamanho da Partícula , Animais , Meios de Contraste/química , Meios de Contraste/farmacocinética , Distribuição Tecidual , Imageamento por Ressonância Magnética/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Camundongos , Ratos , Masculino , Humanos , Feminino
2.
Mutagenesis ; 39(3): 205-217, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38502821

RESUMO

The current Organisation for Economic Co-Operation and Development test guideline number 487 (OECD TG No. 487) provides instruction on how to conduct the in vitro micronucleus assay. This assay is one of the gold standard approaches for measuring the mutagenicity of test items; however, it is directed at testing low molecular weight molecules and may not be appropriate for particulate materials (e.g. engineered nanoparticles [ENPs]). This study aimed to adapt the in vitro micronucleus assay for ENP testing and underpins the development of an OECD guidance document. A harmonized, nano-specific protocol was generated and evaluated by two independent laboratories. Cell lines utilized were human lymphoblastoid (TK6) cells, human liver hepatocytes (HepG2) cells, Chinese hamster lung fibroblast (V79) cells, whole blood, and buffy coat cells from healthy human volunteers. These cells were exposed to reference ENPs from the Joint Research Council (JRC): SiO2 (RLS-0102), Au5nm and Au30nm (RLS-03, RLS-010), CeO2 (NM212), and BaSO4 (NM220). Tungsten carbide-cobalt (WC/Co) was used as a trial particulate positive control. The chemical controls were positive in all cell cultures, but WC/Co was only positive in TK6 and buffy coat cells. In TK6 cells, mutagenicity was observed for SiO2- and both Au types. In HepG2 cells, Au5nm and SiO2 showed sub-two-fold increases in micronuclei. In V79 cells, whole blood, and buffy coat cells, no genotoxicity was detected with the test materials. The data confirmed that ENPs could be tested with the harmonized protocol, additionally, concordant data were observed across the two laboratories with V79 cells. WC/Co may be a suitable particulate positive control in the in vitro micronucleus assay when using TK6 and buffy coat cells. Detailed recommendations are therefore provided to adapt OECD TG No. 487 for testing ENP.


Assuntos
Testes para Micronúcleos , Testes para Micronúcleos/métodos , Testes para Micronúcleos/normas , Humanos , Animais , Nanoestruturas/toxicidade , Cricetinae , Cricetulus , Linhagem Celular , Organização para a Cooperação e Desenvolvimento Econômico , Células Hep G2
3.
Mutagenesis ; 39(2): 69-77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301659

RESUMO

Chemical safety testing plays a crucial role in product and pharmacological development, as well as chemoprevention; however, in vitro genotoxicity safety tests do not always accurately predict the chemicals that will be in vivo carcinogens. If chemicals test positive in vitro for genotoxicity but negative in vivo, this can contribute to unnecessary testing in animals used to confirm erroneous in vitro positive results. Current in vitro tests typically evaluate only genotoxicity endpoints, which limits their potential to detect non-genotoxic carcinogens. The frequency of misleading in vitro positive results can be high, leading to a requirement for more informative in vitro tests. It is now recognized that multiple-endpoint genotoxicity testing may aid more accurate detection of carcinogens and non-carcinogens. The objective of this review was to evaluate the utility of our novel, multiple-endpoint in vitro test, which uses multiple cancer-relevant endpoints to predict carcinogenic potential. The tool assessed micronucleus frequency, p53 expression, p21 expression, mitochondrial respiration, cell cycle abnormalities and, uniquely, cell morphology changes in human lymphoblastoid cell lines, TK6 and MCL-5. The endpoints were used to observe cellular responses to 18 chemicals within the following categories: genotoxic carcinogens, non-genotoxic carcinogens, toxic non-carcinogens, and misleading in vitro positive and negative agents. The number of endpoints significantly altered for each chemical was considered, alongside the holistic Integrated Signature of Carcinogenicity score, derived from the sum of fold changes for all endpoints. Following the calculation of an overall score from these measures, carcinogens exhibited greater potency than non-carcinogens. Genotoxic carcinogens were generally more potent than non-genotoxic carcinogens. This novel approach therefore demonstrated potential for correctly predicting whether chemicals with unknown mechanism may be considered carcinogens. Overall, while further validation is recommended, the test demonstrates potential for the identification of carcinogenic compounds. Adoption of the approach could enable reduced animal use in carcinogenicity testing.


Assuntos
Carcinogênese , Carcinógenos , Animais , Humanos , Carcinógenos/toxicidade , Testes de Carcinogenicidade/métodos , Testes de Mutagenicidade/métodos , Dano ao DNA , Técnicas In Vitro
4.
Mutagenesis ; 39(1): 13-23, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37555614

RESUMO

Cadmium chloride (CdCl2) is a known genotoxic carcinogen, with a mechanism of action thought to partly involve the generation of reactive oxygen species (ROS). We applied here a multi-endpoint approach in vitro to explore the impact of CdCl2 on both the genome and on wider cell biology pathways relevant to cancer. Multi-endpoint approaches are believed to offer greater promise in terms of understanding the holistic effects of carcinogens in vitro. This richer understanding may help better classification of carcinogens as well as allowing detailed mechanisms of action to be identified. We found that CdCl2 caused DNA damage [micronuclei (MN)] in both TK6 and NH32 cells in a dose-dependent manner after 4 h exposure (plus 23 h recovery), with lowest observable effect levels (LOELs) for MN induction of 1 µM (TK6) and 1.6 µM (NH32). This DNA damage induction in TK6 cells was ROS dependent as pretreatment with the antioxidant N-Acetyl Cysteine (1 mM), abrogated this effect. However, 2',7'-dichlorofluorescin diacetate was not capable of detecting the ROS induced by CdCl2. The use of NH32 cells allowed an investigation of the role of p53 as they are a p53 null cell line derived from TK6. NH32 showed a 10-fold increase in MN in untreated cells and a similar dose-dependent effect after CdCl2 treatment. In TK6 cells, CdCl2 also caused activation of p53 (accumulation of total and phosphorylated p53), imposition of cell cycle checkpoints (G2/M) and intriguingly the production of smaller and more eccentric (elongated) cells. Overall, this multi-endpoint study suggests a carcinogenic mechanism of CdCl2 involving ROS generation, oxidative DNA damage and p53 activation, leading to cell cycle abnormalities and impacts of cell size and shape. This study shows how the integration of multiple cell biology endpoints studied in parallel in vitro can help mechanistic understanding of how carcinogens disrupt normal cell biology.


Assuntos
Cloreto de Cádmio , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Cádmio/toxicidade , Cloreto de Cádmio/metabolismo , Dano ao DNA , Ciclo Celular , Carcinógenos/toxicidade
5.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 179-187, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37329528

RESUMO

The expression of six transmembrane epithelial antigen of the prostate (STEAP2) is increased in prostate cancer when compared to normal tissue, suggesting a role for STEAP2 in disease progression. This study aimed to determine whether targeting STEAP2 with an anti-STEAP2 polyclonal antibody (pAb) or CRISPR/Cas9 knockout influenced aggressive prostate cancer traits. Gene expression analysis of the STEAP gene family was performed in a panel of prostate cancer cell lines; C4-2B, DU145, LNCaP and PC3. The highest increases in STEAP2 gene expression were observed in C4-2B and LNCaP cells (p<0.001 and p<0.0001 respectively) when compared to normal prostate epithelial PNT2 cells. These cell lines were treated with an anti-STEAP2 pAb and their viability assessed. CRISPR/Cas9 technology was used to knockout STEAP2 from C4-2B and LNCaP cells and viability, proliferation, migration and invasion assessed. When exposed to an anti-STEAP2 pAb, cell viability significantly decreased (p<0.05). When STEAP2 was knocked out, cell viability and proliferation was significantly decreased when compared to wild-type cells (p<0.001). The migratory and invasive potential of knockout cells were also decreased. These data suggest that STEAP2 has a functional role in driving aggressive prostate cancer traits and could provide a novel therapeutic target for the treatment of prostate cancer.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Perfilação da Expressão Gênica , Linhagem Celular Tumoral
6.
Front Toxicol ; 4: 859122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686044

RESUMO

Genotoxicity testing is performed to determine potential hazard of a chemical or agent for direct or indirect DNA interaction. Testing may be a surrogate for assessment of heritable genetic risk or carcinogenic risk. Testing of nanomaterials (NM) for hazard identification is generally understood to require a departure from normal testing procedures found in international standards and guidelines. A critique of the genotoxicity literature in Elespuru et al., 2018, reinforced evidence of problems with genotoxicity assessment of nanomaterials (NM) noted by many previously. A follow-up to the critique of problems (what is wrong) is a series of methods papers in this journal designed to provide practical information on what is appropriate (right) in the performance of genotoxicity assays altered for NM assessment. In this "Common Considerations" paper, general considerations are addressed, including NM characterization, sample preparation, dosing choice, exposure assessment (uptake) and data analysis that are applicable to any NM genotoxicity assessment. Recommended methods for specific assays are presented in a series of additional papers in this special issue of the journal devoted to toxicology methods for assessment of nanomaterials: the In vitro Micronucleus Assay, TK Mutagenicity assays, and the In vivo Comet Assay. In this context, NM are considered generally as insoluble particles or test articles in the nanometer size range that present difficulties in assessment using techniques described in standards such as OECD guidelines.

7.
Nanotoxicology ; 16(1): 52-72, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35085458

RESUMO

Human ENP exposure is inevitable and the novel, size-dependent physicochemical properties that enable ENPs to be beneficial in innovative technologies are concomitantly causing heightened public concerns as to their potential adverse effects upon human health. This study aims to deduce the mechanisms associated with potential ENP mediated (geno)toxicity and impact upon telomere integrity, if any, of varying concentrations of both ∼16 nm (4.34 × 10-3 to 17.36 × 10-3 mg/mL) Gold (Au) and ∼14 nm (0.85 × 10-5 to 3.32 × 10-5 mg/mL) Silver (Ag) ENPs upon two commonly used lung epithelial cell lines, 16HBE14o- and A549. Following cytotoxicity analysis (via Trypan Blue and Lactate Dehydrogenase assay), two sub-lethal concentrations were selected for genotoxicity analysis using the cytokinesis-blocked micronucleus assay. Whilst both ENP types induced significant oxidative stress, Ag ENPs (1.66 × 10-5 mg/mL) did not display a significant genotoxic response in either epithelial cell lines, but Au ENPs (8.68 × 10-3 mg/mL) showed a highly significant 2.63-fold and 2.4-fold increase in micronucleus frequency in A549 and 16HBE14o- cells respectively. It is hypothesized that the DNA damage induced by acute 24-h Au ENP exposure resulted in a cell cycle stall indicated by the increased mononuclear cell fraction (>6.0-fold) and cytostasis level. Albeit insignificant, a small reduction in telomere length was observed following acute exposure to both ENPs which could indicate the potential for ENP mediated telomere attrition. Finally, from the data shown, both in vitro lung cell cultures (16HBE14o- and A549) are equally as suitable and reliable for the in vitro ENP hazard identification approach adopted in this study.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Dano ao DNA , Células Epiteliais , Ouro/química , Humanos , Pulmão/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Prata/química
8.
Nanomedicine (Lond) ; 17(26): 2011-2021, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36853189

RESUMO

Aim: To quantitatively evaluate the inhibition of human DNA repair proteins APE1 and MTH1 by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles (dUSPIONs). Materials & methods: Liquid chromatography-tandem mass spectrometry with isotope-dilution was used to measure the expression levels of APE1 and MTH1 in MCL-5 cells exposed to increasing doses of dUSPIONs. The expression levels of APE1 and MTH1 were measured in cytoplasmic and nuclear fractions of cell extracts. Results: APE1 and MTH1 expression was significantly inhibited in both cell fractions at the highest dUSPION dose. The expression of MTH1 was linearly inhibited across the full dUSPION dose range in both fractions. Conclusion: These findings warrant further studies to characterize the capacity of dUSPIONs to inhibit other DNA repair proteins in vitro and in vivo.


Inhibitors of DNA repair proteins are increasingly being utilized as potential anticancer agents to supplement traditional chemotherapy and radiation-based approaches. The present study was focused on investigating the use of iron oxide nanoparticles to inhibit the expression of relevant human DNA repair proteins in a cellular model (MCL-5 cells). The authors utilized liquid chromatography­tandem mass spectrometry with isotope dilution to measure the expression levels of two different DNA repair proteins (MTH1 and APE1) in cells after the cells were exposed to increasing levels of the iron oxide nanoparticles. The authors observed significant decreases in DNA repair protein levels that were associated with increasing doses of the iron oxide nanoparticles. The authors' findings warrant more comprehensive studies using other cellular models and suitable animal models.


Assuntos
Dextranos , Nanopartículas Magnéticas de Óxido de Ferro , Humanos , Reparo do DNA
9.
J Nanobiotechnology ; 19(1): 193, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183029

RESUMO

BACKGROUND: With the continued integration of engineered nanomaterials (ENMs) into everyday applications, it is important to understand their potential for inducing adverse human health effects. However, standard in vitro hazard characterisation approaches suffer limitations for evaluating ENM and so it is imperative to determine these potential hazards under more physiologically relevant and realistic exposure scenarios in target organ systems, to minimise the necessity for in vivo testing. The aim of this study was to determine if acute (24 h) and prolonged (120 h) exposures to five ENMs (TiO2, ZnO, Ag, BaSO4 and CeO2) would have a significantly different toxicological outcome (cytotoxicity, (pro-)inflammatory and genotoxic response) upon 3D human HepG2 liver spheroids. In addition, this study evaluated whether a more realistic, prolonged fractionated and repeated ENM dosing regime induces a significantly different toxicity outcome in liver spheroids as compared to a single, bolus prolonged exposure. RESULTS: Whilst it was found that the five ENMs did not impede liver functionality (e.g. albumin and urea production), induce cytotoxicity or an IL-8 (pro-)inflammatory response, all were found to cause significant genotoxicity following acute exposure. Most statistically significant genotoxic responses were not dose-dependent, with the exception of TiO2. Interestingly, the DNA damage effects observed following acute exposures, were not mirrored in the prolonged exposures, where only 0.2-5.0 µg/mL of ZnO ENMs were found to elicit significant (p ≤ 0.05) genotoxicity. When fractionated, repeated exposure regimes were performed with the test ENMs, no significant (p ≥ 0.05) difference was observed when compared to the single, bolus exposure regime. There was < 5.0% cytotoxicity observed across all exposures, and the mean difference in IL-8 cytokine release and genotoxicity between exposure regimes was 3.425 pg/mL and 0.181%, respectively. CONCLUSION: In conclusion, whilst there was no difference between a single, bolus or fractionated, repeated ENM prolonged exposure regimes upon the toxicological output of 3D HepG2 liver spheroids, there was a difference between acute and prolonged exposures. This study highlights the importance of evaluating more realistic ENM exposures, thereby providing a future in vitro approach to better support ENM hazard assessment in a routine and easily accessible manner.


Assuntos
Dano ao DNA/efeitos dos fármacos , Fígado/patologia , Nanoestruturas/administração & dosagem , Nanoestruturas/toxicidade , Albuminas , Proliferação de Células , Citocinas/metabolismo , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Testes de Mutagenicidade , Tamanho da Partícula , Ureia
10.
Toxicol In Vitro ; 75: 105178, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33905840

RESUMO

In vitro cell models offer a unique opportunity for conducting toxicology research, and the human lung adenocarcinoma cell line A549 is commonly used for toxicology testing strategies. It is essential to determine whether the response of these cells grown in different laboratories is consistent. In this study, A549 cells were grown under both submerged and air-liquid interface (ALI) conditions following an identical cell seeding protocol in two independent laboratories. The cells were switched to the ALI after four days of submerged growth, and their behaviour was compared to submerged conditions. The membrane integrity, cell viability, morphology, and (pro-)inflammatory response upon positive control stimuli were assessed at days 3, 5, and 7 under submerged conditions and at days 5, 7, and 10 at the ALI. Due to the high variability of the results between the two laboratories, the experiment was subsequently repeated using identical reagents at one specific time point and condition (day 5 at the ALI). Despite some variability, the results were more comparable, proving that the original protocol necessitated improvements. In conclusion, the use of detailed protocols and consumables from the same providers, special training of personnel for cell handling, and endpoint analysis are critical to obtain reproducible results across independent laboratories.


Assuntos
Técnicas de Cultura de Células , Células Epiteliais , Células A549 , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Laboratórios , Lipopolissacarídeos/farmacologia , Reprodutibilidade dos Testes , Fator de Necrose Tumoral alfa/farmacologia
11.
J Nanobiotechnology ; 19(1): 24, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468168

RESUMO

BACKGROUND: Toxicological evaluation of engineered nanomaterials (ENMs) is essential for occupational health and safety, particularly where bulk manufactured ENMs such as few-layer graphene (FLG) are concerned. Additionally, there is a necessity to develop advanced in vitro models when testing ENMs to provide a physiologically relevant alternative to invasive animal experimentation. The aim of this study was to determine the genotoxicity of non-functionalised (neutral), amine- and carboxyl-functionalised FLG upon both human-transformed type-I (TT1) alveolar epithelial cell monocultures, as well as co-cultures of TT1 and differentiated THP-1 monocytes (d.THP-1 (macrophages)). RESULTS: In monocultures, TT1 and d.THP-1 macrophages showed a statistically significant (p < 0.05) cytotoxic response with each ENM following 24-h exposures. Monoculture genotoxicity measured by the in vitro cytokinesis blocked micronucleus (CBMN) assay revealed significant (p < 0.05) micronuclei induction at 8 µg/ml for amine- and carboxyl-FLG. Transmission electron microscopy (TEM) revealed ENMs were internalised by TT1 cells within membrane-bound vesicles. In the co-cultures, ENMs induced genotoxicity in the absence of cytotoxic effects. Co-cultures pre-exposed to 1.5 mM N-acetylcysteine (NAC), showed baseline levels of micronuclei induction, indicating that the genotoxicity observed was driven by oxidative stress. CONCLUSIONS: Therefore, FLG genotoxicity when examined in monocultures, results in primary-indirect DNA damage; whereas co-cultured cells reveal secondary mechanisms of DNA damage.


Assuntos
Dano ao DNA/efeitos dos fármacos , Grafite/toxicidade , Nanoestruturas/química , Células Epiteliais Alveolares , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Proteínas Filagrinas , Humanos , Macrófagos/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Estresse Oxidativo/efeitos dos fármacos , Células THP-1
12.
Arch Toxicol ; 95(1): 321-336, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910239

RESUMO

Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential. The present study, therefore, employed a holistic, multiple-endpoint approach using low doses of selected carcinogens and non-carcinogens (0.001-770 µM) to assess whether these chemicals caused perturbations in molecular and cellular endpoints relating to the Hallmarks of Cancer. Endpoints included micronucleus induction, alterations in gene expression, cell cycle dynamics, cell morphology and bioenergetics in the human lymphoblastoid cell line TK6. Carcinogens ochratoxin A and oestradiol produced greater Integrated Signature of Carcinogenicity scores for the combined endpoints than the "misleading" in vitro positive compounds, quercetin, 2,4-dichlorophenol and quinacrine dihydrochloride and toxic non-carcinogens, caffeine, cycloheximide and phenformin HCl. This study provides compelling evidence that carcinogens can successfully be distinguished from non-carcinogens using a holistic in vitro test system. Avoidance of misleading in vitro outcomes could lead to the reduction and replacement of animals in carcinogenicity testing.


Assuntos
Testes de Carcinogenicidade , Carcinógenos/toxicidade , Determinação de Ponto Final , Projetos de Pesquisa , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Forma Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Fosforilação , Medição de Risco , Proteína Supressora de Tumor p53/metabolismo
13.
Small ; 17(15): e2002551, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32734718

RESUMO

Few-layer graphene (FLG) has garnered much interest owing to applications in hydrogen storage and reinforced nanocomposites. Consequently, these engineered nanomaterials (ENMs) are in high demand, increasing occupational exposure. This investigation seeks to assess the inhalation hazard of industrially relevant FLG engineered with: (i) no surface functional groups (neutral), (ii) amine, and (iii) carboxyl group functionalization. A monoculture of human lung epithelial (16HBE14o- ) cells is exposed to each material for 24-h, followed by cytotoxicity and genotoxicity evaluation using relative population doubling (RPD) and the cytokinesis-blocked micronucleus (CBMN) assay, respectively. Neutral-FLG induces the greatest (two-fold) significant increase (p < 0.05) in micronuclei, whereas carboxyl-FLG does not induce significant (p < 0.05) genotoxicity. These findings correlate to significant (p < 0.05) concentration-dependent increases in interleukin (IL)-8, depletion of intracellular glutathione (rGSH) and a depletion in mitochondrial ATP production. Uptake of FLG is evaluated by transmission electron microscopy, whereby FLG particles are observed within membrane-bound vesicles in the form of large agglomerates (>1 µm diameter). The findings of the present study have demonstrated the capability of neutral-FLG and amine-FLG to induce genotoxicity in 16HBE14o- cells through primary indirect mechanisms, suggesting a possible role for carboxyl groups in scavenging radicals produced via oxidative stress.


Assuntos
Grafite , Nanocompostos , Dano ao DNA , Células Epiteliais , Proteínas Filagrinas , Grafite/toxicidade , Humanos , Pulmão
14.
Mutagenesis ; 35(4): 319-330, 2020 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-32780103

RESUMO

Following advancements in the field of genotoxicology, it has become widely accepted that 3D models are not only more physiologically relevant but also have the capacity to elucidate more complex biological processes that standard 2D monocultures are unable to. Whilst 3D liver models have been developed to evaluate the short-term genotoxicity of chemicals, the aim of this study was to develop a 3D model that could be used with the regulatory accepted in vitro micronucleus (MN) following low-dose, longer-term (5 days) exposure to engineered nanomaterials (ENMs). A comparison study was carried out between advanced models generated from two commonly used liver cell lines, namely HepaRG and HepG2, in spheroid format. While both spheroid systems displayed good liver functionality and viability over 14 days, the HepaRG spheroids lacked the capacity to actively proliferate and, therefore, were considered unsuitable for use with the MN assay. This study further demonstrated the efficacy of the in vitro 3D HepG2 model to be used for short-term (24 h) exposures to genotoxic chemicals, aflatoxin B1 (AFB1) and methyl-methanesulfonate (MMS). The 3D HepG2 liver spheroids were shown to be more sensitive to DNA damage induced by AFB1 and MMS when compared to the HepG2 2D monoculture. This 3D model was further developed to allow for longer-term (5 day) ENM exposure. Four days after seeding, HepG2 spheroids were exposed to Zinc Oxide ENM (0-2 µg/ml) for 5 days and assessed using both the cytokinesis-block MN (CBMN) version of the MN assay and the mononuclear MN assay. Following a 5-day exposure, differences in MN frequency were observed between the CBMN and mononuclear MN assay, demonstrating that DNA damage induced within the first few cell cycles is distributed across the mononucleated cell population. Together, this study demonstrates the necessity to adapt the MN assay accordingly, to allow for the accurate assessment of genotoxicity following longer-term, low-dose ENM exposure.


Assuntos
Técnicas de Cultura de Células/métodos , Fígado/efeitos dos fármacos , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Esferoides Celulares , Aflatoxina B1/toxicidade , Linhagem Celular , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Metanossulfonato de Metila/toxicidade , Modelos Biológicos
15.
Toxicol In Vitro ; 67: 104905, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32497684

RESUMO

Genotoxicity testing methods in vitro provide a means to predict the DNA damaging effects of chemicals on human cells. This is hindered in the case of hydrophobic test compounds, however, which will partition to in vitro components such as plastic-ware and medium proteins, in preference to the aqueous phase of the exposure medium. This affects the freely available test chemical concentration, and as this freely dissolved aqueous concentration is that bioavailable to cells, it is important to define and maintain this exposure. Passive dosing promises to have an advantage over traditional 'solvent spiking' exposure methods and involves the establishment and maintenance of known chemical concentrations in the in vitro medium, and therefore aqueous phase. Passive dosing was applied in a novel format to expose the MCL-5 human lymphoblastoid cell line to the pro-carcinogen, benzo[a]pyrene (B[a]P) and was compared to solvent (dimethyl sulphoxide) spiked B[a]P exposures over 48 h. Passive dosing induced greater changes, at lower concentrations, to micronucleus frequency, p21 mRNA expression, cell cycle abnormalities, and cell and nuclear morphology. This was attributed to a maintained, definable, free chemical concentration using passive dosing and the presence or absence of solvent, and highlights the influence of exposure choice on genotoxic outcomes.


Assuntos
Carcinógenos/administração & dosagem , Dimetil Sulfóxido/administração & dosagem , Solventes/administração & dosagem , Benzo(a)pireno/administração & dosagem , Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Dimetil Sulfóxido/toxicidade , Humanos , Testes para Micronúcleos , Solventes/toxicidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-31699342

RESUMO

The induction of gene mutation within a DNA sequence can result in an adverse impact, altering or preventing gene function. Therefore, in vitro evaluation of mutagenicity is an essential component of the toxicological screening process. A variety of mutagen screening tools are routinely used in genetic toxicology, which are based on selected reporter genes. These assays are however typically labour intensive and impractical for high throughput screening. Considering this, the IWGT (International Workshops on Genotoxicity Testing) sub-group on Novel & Emerging in vitro Mammalian Cell Mutagenicity Test Systems undertook a literature search to identify new approaches for mutation detection. This review therefore focused on identifying new approaches for mutation detection that have the potential for use as a future genotoxicity screening tool. A comprehensive literature review identified genome-wide loss-of-function screening tools, next generation sequencing (NGS) mutation characterisation and fluorescence-based mutation detection methods as having significant promise as an emerging in vitro mammalian cell mutagenicity test system. Each of the technologies considered was assessed for its capacity to report on a wide array of heritable mutagenic changes, necessary to cover the full spectrum of genetic events imparted by substances with a broad range of modes of action. Of the technologies evaluated, NGS techniques exhibited the greatest advantages for use in a genotoxicity testing setting. However, it is important to note that the emerging techniques identified could not facilitate routine mutagenicity testing in their current format and require substantial additional optimisation and tailoring before they could be utilised as an in vitro mammalian cell mutagenicity test system. Additionally, new mammalian cell mutation test systems must be able to accurately and reliably detect and quantify rare events; hence any new system would require careful validation. Nevertheless, with further development emerging technologies such as NGS could become important in establishing more predictive and high-throughput regulatory hazard screening tools of the future.


Assuntos
Testes de Mutagenicidade/métodos , Animais , Animais Geneticamente Modificados , DNA/efeitos dos fármacos , DNA/genética , Análise Mutacional de DNA/métodos , Elementos de DNA Transponíveis , Previsões , Haploidia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas In Vitro , Instabilidade de Microssatélites , Mutagênese , Seleção Genética , Análise de Célula Única , Expansão das Repetições de Trinucleotídeos
17.
PLoS One ; 14(8): e0220456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31393902

RESUMO

Prostate cancer is the second most common cancer diagnosed in men worldwide; however, few patients are affected by clinically significant disease within their lifetime. Unfortunately, the means to discriminate between patients with indolent disease and those who progress to aggressive prostate cancer is currently unavailable, resulting in over-treatment of patients. We therefore aimed to determine biomarkers of prostate cancer that can be used in the clinic to aid the diagnosis and prognosis. Immunohistochemistry analysis was carried out on prostate cancer specimens with a range of Gleason scores. Samples were stained and analysed for intensity of the Seven Transmembrane Epithelial Antigen of the Prostate (STEAP)-1, -2, -3, -4 and the Divalent Metal Transporter 1 (DMT1) proteins to determine suitable biomarkers for classification of patients likely to develop aggressive prostate cancer. Additionally, these proteins were also analysed to determine whether any would be able to predict future relapse using Kaplan Meier analysis. Data generated demonstrated that the protein expression levels of STEAP2 correlated significantly with Gleason score; furthermore, STEAP4 was a significant predictor of relapse. This data indicates that STEAP2 could be potential prognostic candidate for use in combination with the current prostate cancer detection methods and the presence of STEAP4 could be an indicator of possible relapse.


Assuntos
Antígenos de Neoplasias/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Oxirredutases/biossíntese , Próstata/metabolismo , Neoplasias da Próstata , Fatores de Transcrição/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Prognóstico , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
18.
Part Fibre Toxicol ; 16(1): 8, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760282

RESUMO

BACKGROUND: It is well established that toxicological evaluation of engineered nanomaterials (NMs) is vital to ensure the health and safety of those exposed to them. Further, there is a distinct need for the development of advanced physiologically relevant in vitro techniques for NM hazard prediction due to the limited predictive power of current in vitro models and the unsustainability of conducting nano-safety evaluations in vivo. Thus, the purpose of this study was to develop alternative in vitro approaches to assess the potential of NMs to induce genotoxicity by secondary mechanisms. RESULTS: This was first undertaken by a conditioned media-based technique, whereby cell culture media was transferred from differentiated THP-1 (dTHP-1) macrophages treated with γ-Fe2O3 or Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) to the bronchial cell line 16HBE14o-. Secondly construction and SPION treatment of a co-culture model comprising of 16HBE14o- cells and dTHP-1 macrophages. For both of these approaches no cytotoxicity was detected and chromosomal damage was evaluated by the in vitro micronucleus assay. Genotoxicity assessment was also performed using 16HBE14o- monocultures, which demonstrated only γ-Fe2O3 nanoparticles to be capable of inducing chromosomal damage. In contrast, immune cell conditioned media and dual cell co-culture SPION treatments showed both SPION types to be genotoxic to 16HBE14o- cells due to secondary genotoxicity promoted by SPION-immune cell interaction. CONCLUSIONS: The findings of the present study demonstrate that the approach of using single in vitro cell test systems precludes the ability to consider secondary genotoxic mechanisms. Consequently, the use of multi-cell type models is preferable as they better mimic the in vivo environment and thus offer the potential to enhance understanding and detection of a wider breadth of potential damage induced by NMs.


Assuntos
Dano ao DNA , Compostos Férricos/toxicidade , Nanopartículas de Magnetita/toxicidade , Testes de Mutagenicidade/métodos , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Brônquios/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados , Citocinas/biossíntese , Endocitose/efeitos dos fármacos , Humanos , Técnicas In Vitro , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Células THP-1
19.
Artigo em Inglês | MEDLINE | ID: mdl-30173862

RESUMO

The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 µl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 µM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 µM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Fígado/patologia , Testes de Mutagenicidade/métodos , Mutagênicos/efeitos adversos , Esferoides Celulares/patologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Testes para Micronúcleos
20.
Sci Rep ; 8(1): 6252, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674723

RESUMO

Six-transmembrane epithelial antigen of the prostate-2 (STEAP2) expression is increased in prostate cancer when compared to normal prostate, suggesting STEAP2 may drive prostate cancer progression. This study aimed to establish the functional role of STEAP2 in prostate tumourigenesis and evaluate if its knockdown resulted in reduced invasive potential of prostate cancer cells. PC3 and LNCaP cells were transfected with STEAP2 siRNA and proliferation, migration, invasion and gene expression analyses were performed. STEAP2 immunohistochemistry was applied to assess the protein expression and localisation according to Gleason score in 164 prostate cancer patients. Invasion significantly decreased in both cell lines following STEAP2 knockdown. PC3 proliferation and migration capacity significantly reduced, while LNCaP cell morphology and growth characteristics were altered. Additionally, STEAP2 downstream targets associated with driving invasion were identified as MMP3, MMP10, MMP13, FGFR4, IL1ß, KiSS1 and SERPINE1 in PC3 cells and, MMP7 in LNCaP cells, with CD82 altered in both. In patient tissues, STEAP2 expression was significantly increased in prostate cancer samples and this significantly correlated with Gleason score. These data demonstrate that STEAP2 drives aggressive prostate cancer traits by promoting proliferation, migration and invasion and significantly influencing the transcriptional profile of ten genes underlying the metastatic cascade.


Assuntos
Proteínas de Membrana/deficiência , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/deficiência , Oxirredutases/deficiência , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Oxirredutases/metabolismo , Neoplasias da Próstata/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA