Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839305

RESUMO

Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation. Appropriate control groups were included. Behavioral test battery was used for social behavior (sociability, social discrimination, social interaction, resident intruder test) and possible confounding factors (open field, elevated plus maze, Y-maze tests). Neuronal activation was studied by c-Fos immunohistochemistry. Human relevance was confirmed by VGluT3 gene expression in relevant human brainstem areas. VGluT3 KO mice exhibited increased anxiety, social interest, but also aggressive behavior in anxiogenic environment and impaired social memory. For KO animals, social interaction induced lower cell activation in the anterior cingulate, infralimbic cortex, and medial septum. In turn, excitation of MRR-VGluT3+ neurons was anxiolytic. Inhibition increased social interest 24 h later but decreased mobility and social behavior in aggressive context. Chemogenetic activation increased the number of c-Fos+ neurons only in the MRR. We confirmed the increased anxiety-like behavior and impaired memory of VGluT3 KO strain and revealed increased, but inadequate, social behavior. MRR-VGluT3 neurons regulated mobility and social and anxiety-like behavior in a context-dependent manner. The presence of VGluT3 mRNA on corresponding human brain areas suggests clinical relevance.


Assuntos
Ansiedade , Camundongos Knockout , Comportamento Social , Animais , Masculino , Humanos , Ansiedade/metabolismo , Núcleos da Rafe/metabolismo , Camundongos , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia , Camundongos Transgênicos , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Agressão/fisiologia
2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673899

RESUMO

According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response.


Assuntos
Clozapina/análogos & derivados , Neurônios Dopaminérgicos , Comportamento Social , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Humanos , Clozapina/farmacologia , Núcleos da Rafe/metabolismo , Comportamento Animal , Dopamina/metabolismo , Camundongos Endogâmicos C57BL
3.
J Chem Neuroanat ; 129: 102241, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738851

RESUMO

The amylin and the melanin-concentrating hormone [MCH] are two peptides related to energetic homeostasis. During lactation, it is possible to locate neurons expressing these peptides in the preoptic area of rat dams. In addition, it was demonstrated that the number of MCH neurons in this region is modulated by litter size. Taken together, the aims of this work were (1) to verify the time course of amylin immunoreactivity during lactation; (2) to verify whether litter size modulates the number of amylin-ir neurons (3) to verify whether there is colocalization between the amylin-ir and MCH-ir neurons. Our results show that (1) there is an increase in the number of amylin-ir neurons during lactation, which reaches a peak at postpartum day 19 and drastically reduces after weaning; (2) there is no correlation between litter size and the number of amylin-ir neurons; and (3) there is minimal overlap between amylin-ir and MCH-ir neurons.


Assuntos
Hormônios Hipotalâmicos , Área Pré-Óptica , Feminino , Ratos , Animais , Área Pré-Óptica/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Hormônios Hipofisários , Hormônios Hipotalâmicos/metabolismo , Melaninas , Lactação , Neurônios/metabolismo
4.
Front Neurosci ; 14: 621, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612510

RESUMO

The hypothalamo-pituitary system developed in early vertebrates. Prolactin is an ancient vertebrate hormone released from the pituitary that exerts particularly diverse functions. The purpose of the review is to take a comparative approach in the description of prolactin, its secretion from pituitary lactotrophs, and hormonal functions. Since the reproductive and osmoregulatory roles of prolactin are best established in a variety of species, these functions are the primary subjects of discussion. Different types of prolactin and prolactin receptors developed during vertebrate evolution, which will be described in this review. The signal transduction of prolactin receptors is well conserved among vertebrates enabling us to describe the whole subphylum. Then, the review focuses on the regulation of prolactin release in mammals as we have the most knowledge on this class of vertebrates. Prolactin secretion in response to different reproductive stimuli, such as estrogen-induced release, mating, pregnancy and suckling is detailed. Reproduction in birds is different from that in mammals in several aspects. Prolactin is released during incubation in avian species whose regulation and functional significance are discussed. Little information is available on prolactin in reptiles and amphibians; therefore, they are mentioned only in specific cases to explain certain evolutionary aspects. In turn, the osmoregulatory function of prolactin is well established in fish. The different types of pituitary prolactin in fish play particularly important roles in the adaptation of eutherian species to fresh water environments. To achieve this function, prolactin is released from lactotrophs in hyposmolarity, as they are directly osmosensitive in fish. In turn, the released prolactin acts on branchial epithelia, especially ionocytes of the gill to retain salt and excrete water. This review will highlight the points where comparative data give new ideas or suggest new approaches for investigation in other taxa.

5.
Brain Struct Funct ; 225(2): 639-667, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31982949

RESUMO

The ketoglutarate dehydrogenase complex (KGDHC) consists of three different subunits encoded by OGDH (or OGDHL), DLST, and DLD, combined in different stoichiometries. DLD subunit is shared between KGDHC and pyruvate dehydrogenase complex, branched-chain alpha-keto acid dehydrogenase complex, and the glycine cleavage system. Despite KGDHC's implication in neurodegenerative diseases, cell-specific localization of its subunits in the adult human brain has never been investigated. Here, we show that immunoreactivity of all known isoforms of OGDHL, OGDH, and DLST was detected exclusively in neurons of surgical human cortical tissue samples identified by their morphology and visualized by double labeling with fluorescent Nissl, while being absent from glia expressing GFAP, Aldhl1, myelin basic protein, Olig2, or IBA1. In contrast, DLD immunoreactivity was evident in both neurons and glia. Specificity of anti-KGDHC subunits antisera was verified by a decrease in staining of siRNA-treated human cancer cell lines directed against the respective coding gene products; furthermore, immunoreactivity of KGDHC subunits in human fibroblasts co-localized > 99% with mitotracker orange, while western blotting of 63 post-mortem brain samples and purified recombinant proteins afforded further assurance regarding antisera monospecificity. KGDHC subunit immunoreactivity correlated with data from the Human Protein Atlas as well as RNA-Seq data from the Allen Brain Atlas corresponding to genes coding for KGDHC components. Protein lysine succinylation, however, was immunohistochemically evident in all cortical cells; this was unexpected, because this posttranslational modification requires succinyl-CoA, the product of KGDHC. In view of the fact that glia of the human brain cortex lack succinate-CoA ligase, an enzyme producing succinyl-CoA when operating in reverse, protein lysine succinylation in these cells must exclusively rely on propionate and/or ketone body metabolism or some other yet to be discovered pathway encompassing succinyl-CoA.


Assuntos
Acil Coenzima A/análise , Córtex Cerebral/química , Complexo Cetoglutarato Desidrogenase/análise , Lisina/análise , Neurônios/química , Células Cultivadas , Feminino , Humanos , Masculino , Neuroglia/metabolismo , Isoformas de Proteínas/análise , Subunidades Proteicas/análise
6.
Mol Neurobiol ; 56(12): 7950-7965, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31134458

RESUMO

Part of the ventral striatal division, the nucleus accumbens (NAc) drives the circuit activity of an entire macrosystem about reward like a "flagship," signaling and leading diverse conducts. Accordingly, NAc neurons feature complex inhibitory phenotypes that assemble to process circuit inputs and generate outputs by exploiting specific arrays of opposite and/or parallel neurotransmitters, neuromodulatory peptides. The resulting complex combinations enable versatile yet specific forms of accumbal circuit plasticity, including maladaptive behaviors. Although reward signaling and behavior are elaborately linked to neuronal circuit activities, it is plausible to propose whether these neuronal ensembles and synaptic islands can be directly controlled by astrocytes, a powerful modulator of neuronal activity. Pioneering studies showed that astrocytes in the NAc sense citrate cycle metabolites and/or ATP and may induce recurrent activation. We argue that the astrocytic calcium, GABA, and Glu signaling and altered sodium and chloride dynamics fundamentally shape metaplasticity by providing active regulatory roles in the synapse- and network-level flexibility of the NAc.


Assuntos
Astrócitos/metabolismo , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácido Glutâmico/metabolismo , Humanos , Ácido gama-Aminobutírico/metabolismo
7.
Brain Struct Funct ; 223(7): 3229-3250, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29802523

RESUMO

Nursing has important consequences on mothers. To separate the prolactin-mediated and the neuronally-mediated actions of nursing, neurons directly affected by prolactin were visualized using pSTAT5 immunohistochemistry in relation to Fos-expressing neurons in suckled mother mice. In response to pup exposure following 22-h pup deprivation, we found a markedly elevated number of pSTAT5-containing neurons in several brain regions, including the lateral septum, medial amygdaloid nucleus, subparafascicular area, caudal periaqueductal gray, dorsal raphe, lateral parabrachial nucleus, nucleus of the solitary tract, and the periventricular, medial preoptic, paraventricular, arcuate and ventromedial nuclei of the hypothalamus. Pup exposure also induced Fos expression in all of these brain regions except the arcuate and ventromedial hypothalamic nuclei. Bromocriptine treatment known to reduce prolactin levels eliminated pSTAT5 from most brain regions while it did not affect Fos activation following suckling. The degree of colocalization for pSTAT5 and Fos ranged from 8 to 80% in the different brain regions suggesting that most neurons responding to pup exposure in mother mice are driven either by prolactin or direct neuronal input from the pups, while the number of neurons affected by both types of inputs depends on the examined brain area. In addition, both pSTAT5 and Fos were also double-labeled with estrogen receptor alpha (ERα) in mother mice, which revealed a very high degree of colocalization between pSTAT5 and ERα with much less potential interaction between Fos- and ERα-containing neurons suggesting that estrogen-sensitive neurons are more likely to be affected by prolactin than by direct neuronal activation.


Assuntos
Encéfalo/metabolismo , Lactação/metabolismo , Neurônios/metabolismo , Prolactina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Animais Lactentes , Comportamento Animal , Encéfalo/efeitos dos fármacos , Bromocriptina/farmacologia , Receptor alfa de Estrogênio/metabolismo , Feminino , Antagonistas de Hormônios/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Fosforilação
8.
Brain Res ; 1686: 1-9, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457994

RESUMO

Uric acid has a role in several physiological and pathophysiological processes. For example, uric acid may facilitate seizure generalization while reducing uric acid level may evoke anticonvulsant/antiepileptic effects. Allopurinol blocks the activity of xanthine oxidase, by which allopurinol inhibits catabolism of hypoxanthine to xanthine and uric acid and, as a consequence, decreases the level of uric acid. Although the modulation of serum uric acid level is a widely used strategy in the treatment of certain diseases, our knowledge regarding the effects of uric acid on epileptic activity is far from complete. Thus, the main aim of this study was the investigation of the effect of uric acid on absence epileptic seizures (spike-wave discharges: SWDs) in a model of human absence epilepsy, the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rat. We investigated the influence of intraperitoneally (i.p.) injected uric acid (100 mg/kg and 200 mg/kg), allopurinol (50 mg/kg and 100 mg/kg), a cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibitor indomethacin (10 mg/kg) and inosine (500 mg/kg) alone and the combined application of allopurinol (50 mg/kg) with uric acid (100 mg/kg) or inosine (500 mg/kg) as well as indomethacin (10 mg/kg) with uric acid (100 mg/kg) and inosine (500 mg/kg) with uric acid (100 mg/kg) on absence epileptic activity. We demonstrated that both uric acid and allopurinol alone significantly increased the number of SWDs whereas indomethacin abolished the uric acid-evoked increase in SWD number. Our results suggest that uric acid and allopurinol have proepileptic effects in WAG/Rij rats.


Assuntos
Alopurinol/farmacologia , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Epilepsia Tipo Ausência/induzido quimicamente , Ácido Úrico/farmacologia , Animais , Encéfalo/fisiopatologia , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/fisiopatologia , Masculino , Ratos Wistar
9.
Nutr Neurosci ; 21(5): 317-327, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28185482

RESUMO

OBJECTIVES: The aim of the study was to understand the effects of suckling on the brain of the pups by mapping their brain activation pattern in response to suckling. METHODS: The c-fos method was applied to identify activated neurons. Fasted rat pups were returned to their mothers for suckling and sacrificed 2 hours later for Fos immunohistochemistry. Double labeling was also performed to characterize some of the activated neurons. For comparison, another group of fasted pups were given dry food before Fos mapping. RESULTS: After suckling, we found an increase in the number of Fos-immunoreactive neurons in the insular and somatosensory cortices, central amygdaloid nucleus (CAm), paraventricular (PVN) and supraoptic hypothalamic nuclei, lateral parabrachial nucleus (LPB), nucleus of the solitary tract (NTS), and the area postrema. Double labeling experiments demonstrated the activation of calcitonin gene-related peptide-ir (CGRP-ir) neurons in the LPB, corticotropin-releasing hormone-ir (CRH-ir) but not oxytocin-ir neurons in the PVN, and noradrenergic neurons in the NTS. In the CAm, Fos-ir neurons did not contain CRH but were apposed to CGRP-ir fiber terminals. Refeeding with dry food-induced Fos activation in all brain areas activated by suckling. The degree of activation was higher following dry food consumption than suckling in the insular cortex, and lower in the supraoptic nucleus and the NTS. Furthermore, the accumbens, arcuate, and dorsomedial hypothalamic nuclei, and the lateral hypothalamic area, which were not activated by suckling, showed activation by dry food. DISCUSSION: Neurons in a number of brain areas are activated during suckling, and may participate in the signaling of satiety, taste perception, reward, food, and salt balance regulation.


Assuntos
Animais Lactentes , Encéfalo/fisiologia , Ingestão de Alimentos/fisiologia , Animais , Animais Recém-Nascidos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Núcleo Central da Amígdala/fisiologia , Hormônio Liberador da Corticotropina/metabolismo , Regulação da Expressão Gênica , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Ocitocina/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo , Desmame
10.
Mol Neurobiol ; 55(5): 4253-4266, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28620701

RESUMO

Chronic cerebral hypoperfusion (CCH) evokes mild cognitive impairment (MCI) and contributes to the progression of vascular dementia and Alzheimer's disease (AD). How CCH induces these neurodegenerative processes that may spread along the synaptic network and whether they are detectable at the synaptic proteome level of the cerebral cortex remains to be established. In the present study, we report the synaptic protein changes in the cerebral cortex after stepwise bilateral common carotid artery occlusion (BCCAO) induced CCH in the rat. The occlusions were confirmed with magnetic resonance angiography 5 weeks after the surgery. Synaptosome fractions were prepared using sucrose gradient centrifugation from cerebral cortex dissected 7 weeks after the occlusion. The synaptic protein differences between the sham operated and CCH groups were analyzed with label-free nanoUHPLC-MS/MS. We identified 46 proteins showing altered abundance due to CCH. In particular, synaptic protein and lipid metabolism, as well as GABA shunt-related proteins showed increased while neurotransmission and synaptic assembly-related proteins showed decreased protein level changes in CCH rats. Protein network analysis of CCH-induced protein alterations suggested the importance of increased synaptic apolipoprotein E (APOE) level as a consequence of CCH. Therefore, the change in APOE level was confirmed with Western blotting. The identified synaptic protein changes would precede the onset of dementia-like symptoms in the CCH model, suggesting their importance in the development of vascular dementia.


Assuntos
Córtex Cerebral/metabolismo , Circulação Cerebrovascular , Proteoma/metabolismo , Sinapses/metabolismo , Animais , Apolipoproteínas E/metabolismo , Córtex Cerebral/diagnóstico por imagem , Angiografia por Ressonância Magnética , Masculino , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar , Reprodutibilidade dos Testes , Sinapses/ultraestrutura , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
11.
Front Mol Neurosci ; 10: 235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790891

RESUMO

The state of therapeutic ketosis can be achieved by using the ketogenic diet (KD) or exogenous ketone supplementation. It was suggested previously that the adenosinergic system may be involved in the mediating effect of KD on suppressing seizure activity in different types of epilepsies, likely by means of adenosine A1 receptors (A1Rs). Thus, we tested in the present study whether exogenous ketone supplements (ketone ester: KE, 2.5 g/kg/day; ketone salt/KS + medium chain triglyceride/MCT: KSMCT, 2.5 g/kg/day) applied sub-chronically (for 7 days) by intragastric gavage can modulate absence epileptic activity in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. The number of spike-wave discharges (SWDs) significantly and similarly decreased after both KE and KSMCT treatment between 3rd and 7th days of gavage. Moreover, blood beta-hydroxybutyrate (ßHB) levels were significantly increased alike after KE and KSMCT gavage, compared to control levels. The SWD number and ßHB levels returned to the baseline levels on the first day without ketone supplementation. To determine whether A1Rs can modify ketone supplement-evoked changes in absence epileptic activity, we applied a non-pro-epileptic dose of a specific A1R antagonist DPCPX (1,3-dipropyl-8-cyclopentylxanthine) (intraperitoneal/i.p. 0.2 mg/kg) in combination with KSMCT (2.5 g/kg/day, gavage). As expected, DPCPX abolished the KSMCT-evoked decrease in SWD number. Thus, we concluded that application of exogenous ketone supplements may decrease absence epileptic activity in WAG/Rij rats. Moreover, our results suggest that among others the adenosinergic system, likely via A1Rs, may modulate the exogenous ketone supplements-evoked anti-seizure effects.

12.
Mol Neurobiol ; 54(3): 2060-2078, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26910821

RESUMO

Alzheimer's disease (AD) is a multifactorial disease of wide clinical heterogenity. Overproduction of amyloid precursor protein (APP) and accumulation of ß-amyloid (Aß) and tau proteins are important hallmarks of AD. The identification of early pathomechanisms of AD is critically important for discovery of early diagnosis markers. Decreased brain metabolism is one of the earliest clinical symptoms of AD that indicate mitochondrial dysfunction in the brain. We performed the first comprehensive study integrating synaptic and non-synaptic mitochondrial proteome analysis (two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry) in correlation with Aß progression in APP/PS1 mice (3, 6, and 9 months of age). We identified changes of 60 mitochondrial proteins that reflect the progressive effect of APP overproduction and Aß accumulation on mitochondrial processes. Most of the significantly affected proteins play role in the mitochondrial electron transport chain, citric acid cycle, oxidative stress, or apoptosis. Altered expression levels of Htra2 and Ethe1, which showed parallel changes in different age groups, were confirmed also by Western blot. The common regulator bioinformatical analysis suggests the regulatory role of tumor necrosis factor (TNF) in Aß-mediated mitochondrial protein changes. Our results are in accordance with the previous postmortem human brain proteomic studies in AD in the case of many proteins. Our results could open a new path of research aiming early mitochondrial molecular mechanisms of Aß accumulation as a prodromal stage of human AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Mitocôndrias/metabolismo , Proteoma/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Proteoma/genética
13.
Endocrinology ; 158(2): 335-348, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27841935

RESUMO

Oxytocin is released from neurons in the paraventricular hypothalamic nucleus (PVN) in mothers upon suckling and during adult social interactions. However, neuronal pathways that activate oxytocin neurons in social contexts are not yet established. Neurons in the posterior intralaminar complex of the thalamus (PIL), which contain tuberoinfundibular peptide 39 (TIP39) and are activated by pup exposure in lactating mothers, provide a candidate projection. Innervation of oxytocin neurons by TIP39 neurons was examined by double labeling in combination with electron microscopy and retrograde tract-tracing. Potential classic neurotransmitters in TIP39 neurons were investigated by in situ hybridization histochemistry. Neurons activated after encounter with a familiar conspecific female in a familiar environment were mapped with the c-Fos technique. PVN and the supraoptic nucleus oxytocin neurons were closely apposed by an average of 2.0 and 0.4 TIP39 terminals, respectively. Asymmetric (presumed excitatory) synapses were found between TIP39 terminals and cell bodies of oxytocin neurons. In lactating rats, PIL TIP39 neurons were retrogradely labeled from the PVN. TIP39 neurons expressed vesicular glutamate transporter 2 but not glutamic acid decarboxylase 67. PIL contained a markedly increased number of c-Fos-positive neurons in response to social encounter with a familiar conspecific female. Furthermore, the PIL received ascending input from the spinal cord and the inferior colliculus. Thus, TIP39 neurons in the PIL may receive sensory input in response to social interactions and project to the PVN to innervate and excite oxytocin neurons, suggesting that the PIL-PVN projection contributes to the activation of oxytocin neurons in social contexts.


Assuntos
Hipotálamo/anatomia & histologia , Comportamento Materno/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Tálamo/anatomia & histologia , Animais , Animais Recém-Nascidos , Feminino , Hipotálamo/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Tálamo/fisiologia
14.
Brain Res Bull ; 124: 172-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27154620

RESUMO

The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system.


Assuntos
Anticonvulsivantes/efeitos adversos , Epilepsia Tipo Ausência/induzido quimicamente , Guanosina/efeitos adversos , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletroencefalografia , Análise de Fourier , Indometacina/farmacologia , Lipopolissacarídeos/toxicidade , Antagonistas de Receptores Purinérgicos P1/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Teofilina/farmacologia , Fatores de Tempo , Triazóis/farmacologia
15.
Brain Res Bull ; 118: 46-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26365718

RESUMO

We showed previously that the number of spike-wave discharges (SWDs) was increased after intraperitoneal (i.p.) injection of lipopolysaccharide (LPS), inosine (Ino) and muscimol alone whereas i.p. guanosine (Guo), uridine (Urd), bicuculline, theophylline and (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801) alone decreased the SWD number in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. These drugs may exert their effects on absence epileptic activity mainly via proinflammatory cytokines-evoked increase in cortical excitability (such as LPS), GABAergic system (LPS, Ino, Urd, muscimol and bicuculline), glutamatergic system (LPS, Guo and MK-801) and adenosinergic system (LPS, Ino, Guo, Urd and theophylline). Both GABAergic system and glutamatergic system are involved in the pathomechanism of absence epilepsy, the LPS-evoked increase in absence epileptic activity and the pro- or antiepileptic effects of non-adenosine (non-Ado) nucleosides Ino, Guo and Urd. Moreover, Ino, Guo and Urd have modulatory effects on inflammatory processes. Thus, we investigated whether Ino, Guo and Urd have also modulatory influence on LPS-evoked increase in SWD number using two different concentrations of each nucleoside in WAG/Rij rats. We demonstrated that Ino dose-dependently aggravated whereas Guo and Urd attenuated the LPS-evoked increase in SWD number. Our results suggest that different nucleosides have diverse effects on LPS-induced changes in absence epileptic activity.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Ribonucleosídeos/farmacologia , Animais , Anticonvulsivantes/farmacologia , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletroencefalografia/efeitos dos fármacos , Epilepsia Tipo Ausência/induzido quimicamente , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/fisiopatologia , Masculino , Modelos Animais , Ratos , Ratos Wistar
16.
Mini Rev Med Chem ; 14(13): 1033-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25382017

RESUMO

Adenosine (Ado) and some non-adenosine (non-Ado) nucleosides including inosine (Ino), guanosine (Guo) and uridine (Urd) are modulatory molecules in the central nervous system (CNS), regulating different physiological and pathophysiological processes in the brain such as sleep and epilepsy. Indeed, different drugs effective on adenosinergic system (e.g., Ado metabolism inhibitors, agonists and antagonists of Ado receptors) are being used in drug development for the treatment of epileptic disorders. Although (i) endogenous Ino, Guo and Urd showed anticonvulsant/antiepileptic effects (e.g., in quinolinic acid - induced seizures and in different epilepsy models such as hippocampal kindling models), and (ii) there is a need to generate new and more effective antiepileptic drugs for the treatment of drug-resistant epilepsies, our knowledge about antiepileptic influence of non-Ado nucleosides is far from complete. Thus, in this review article, we give a short summary of anticonvulsant/antiepileptic effects and mechanisms evoked by Ino, Guo, and Urd. Finally, we discuss some non-Ado nucleoside derivatives and their structures, which may be candidates as potential antiepileptic agents.


Assuntos
Anticonvulsivantes/farmacologia , Nucleosídeos/farmacologia , Adenosina/química , Adenosina/farmacologia , Animais , Anticonvulsivantes/química , Guanosina/química , Guanosina/farmacologia , Humanos , Inosina/química , Inosina/farmacologia , Nucleosídeos/química , Uridina/química , Uridina/farmacologia
17.
Psychoneuroendocrinology ; 38(12): 3070-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24094875

RESUMO

Nursing has important physiological and psychological consequences on mothers during the postpartum period. Tuberoinfundibular peptide of 39 residues (TIP39) may contribute to its effects on prolactin release and maternal motivation. Since TIP39-containing fibers and the receptor for TIP39, the parathyroid hormone 2 receptor (PTH2 receptor) are abundant in the arcuate nucleus and the medial preoptic area, we antagonized TIP39 action locally to reveal its actions. Mediobasal hypothalamic injection of a virus encoding an antagonist of the PTH2 receptor markedly decreased basal serum prolactin levels and the suckling-induced prolactin release. In contrast, injecting this virus into the preoptic area had no effect on prolactin levels, but did dampen maternal motivation, judged by reduced time in a pup-associated cage during a place preference test. In support of an effect of TIP39 on maternal motivation, we observed that TIP39 containing fibers and terminals had the same distribution within the preoptic area as neurons expressing Fos in response to suckling. Furthermore, TIP39 terminals closely apposed the plasma membrane of 82% of Fos-ir neurons. Retrograde tracer injected into the arcuate nucleus and the medial preoptic area labeled TIP39 neurons in the posterior intralaminar complex of the thalamus (PIL), indicating that these cells but not other groups of TIP39 neurons project to these hypothalamic regions. We also found that TIP39 mRNA levels in the PIL markedly increased around parturition and remained elevated throughout the lactation period, demonstrating the availability of the peptide in postpartum mothers. Furthermore, suckling, but not pup exposure without physical contact, increased Fos expression by PIL TIP39 neurons. These results indicate that suckling activates TIP39 neurons in the PIL that affect prolactin release and maternal motivation via projections to the arcuate nucleus and the preoptic area, respectively.


Assuntos
Lactação/fisiologia , Comportamento Materno/fisiologia , Motivação/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/fisiologia , Tálamo/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/fisiologia , Toxina da Cólera/farmacologia , Condicionamento Operante/fisiologia , Feminino , Genes fos , Processamento de Imagem Assistida por Computador , Hibridização In Situ , Lentivirus/genética , Masculino , Fibras Nervosas/fisiologia , Reação em Cadeia da Polimerase , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Prolactina/sangue , Ratos , Ratos Wistar , Canais de Potássio Shab/metabolismo , Técnicas Estereotáxicas , Tálamo/metabolismo
18.
Curr Med Chem ; 20(34): 4217-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23992313

RESUMO

Elements of the nucleoside system (nucleoside levels, 5'-nucleotidases (5'NTs) and other nucleoside metabolic enzymes, nucleoside transporters and nucleoside receptors) are unevenly distributed in the brain, suggesting that nucleosides have region-specific functions in the human brain. Indeed, adenosine (Ado) and non-Ado nucleosides, such as guanosine (Guo), inosine (Ino) and uridine (Urd), modulate both physiological and pathophysiological processes in the brain, such as sleep, pain, memory, depression, schizophrenia, epilepsy, Huntington's disease, Alzheimer's disease and Parkinson's disease. Interactions have been demonstrated in the nucleoside system between nucleoside levels and the activities of nucleoside metabolic enzymes, nucleoside transporters and Ado receptors in the human brain. Alterations in the nucleoside system may induce pathological changes, resulting in central nervous system (CNS) diseases. Moreover, several CNS diseases such as epilepsy may be treated by modulation of the nucleoside system, which is best achieved by modulating 5'NTs, as 'NTs exhibit numerous functions in the CNS, including intracellular and extracellular formation of nucleosides, termination of nucleoside triphosphate signaling, cell adhesion, synaptogenesis and cell proliferation. Thus, modulation of 5'NT activity may be a promising new therapeutic tool for treating several CNS diseases. The present article describes the regionally different activities of the nucleoside system, demonstrates the associations between these activities and 5'NT activity and discusses the therapeutic implications of these associations.


Assuntos
5'-Nucleotidase/metabolismo , Encéfalo/enzimologia , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/terapia , Nucleosídeos/metabolismo , 5'-Nucleotidase/química , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças do Sistema Nervoso Central/patologia , Humanos
19.
Brain Res Bull ; 97: 16-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23707857

RESUMO

Pharmacological and functional data suggest the existence of uridine (Urd) receptors in the central nervous system (CNS). In the present study, simultaneous extracellular single unit recording and microiontophoretic injection of the pyrimidine nucleoside Urd was used to provide evidence for the presence of Urd-sensitive neurons in the thalamus and the cerebral cortex of Long Evans rats. Twenty-two neurons in the thalamus (24% of recorded neurons) and 17 neurons in the cortex (55%) responded to the direct iontophoresis of Urd. The majority of Urd-sensitive neurons in the thalamus and cortex (82% and 59%, respectively) increased their firing rate in response to Urd. In contrary, adenosine (Ado) and uridine 5'-triphosphate (UTP) decreased the firing rate of all responding neurons in the thalamus, and the majority of responding neurons in the cortex (83% and 87%, respectively). Functional relevance of Urd-sensitive neurons was investigated in spontaneously epileptic freely moving Long Evans and Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. Intraperitoneal (i.p.) injection of 500mg/kg Urd decreased epileptic activity (210-270min after injection) in both rat strains. Intraperitoneal administration of 1000mg/kg Urd decreased the number of spike-wave discharges (SWDs) between 150-270min and 90-270min in Long Evans and WAG/Rij rats, respectively. The effect of Urd was long-lasting in both rat strains as the higher dose significantly decreased the number of SWDs even 24h after Urd injection. The present results suggest that Urd-sensitive neurons in the thalamus and the cerebral cortex may play a role in the antiepileptic action of Urd possibly via modulation of thalamocortical neuronal circuits.


Assuntos
Anticonvulsivantes/farmacologia , Inibição Neural , Neurônios/efeitos dos fármacos , Uridina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Epilepsia Tipo Ausência/fisiopatologia , Masculino , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Ratos Wistar , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
20.
PLoS One ; 7(10): e46731, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056426

RESUMO

Transforming growth factor-ßs (TGF-ß1-3) are cytokines that regulate the proliferation, differentiation, and survival of various cell types. The present study describes the induction of TGF-ß1-3 in the rat after focal ischemia at 3 h, 24 h, 72 h and 1 month after transient (1 h) or permanent (24 h) middle cerebral artery occlusion (MCAO) using in situ hybridization histochemistry and quantitative analysis. Double labeling with different markers was used to identify the localization of TGF-ß mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-ßs. TGF-ß1 expression increased 3 h after MCAO in the penumbra and was further elevated 24 h after MCAO. TGF-ß1 was present mostly in microglial cells but also in some astrocytes. By 72 h and 1 month after the occlusion, TGF-ß1 mRNA-expressing cells also appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-ß2 mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, and V of the ipsilateral cerebral cortex 24 h after MCAO. TGF-ß3 was not induced in cells around the penumbra. Its expression increased in only a few cells in layer II of the cerebral cortex 24 h after MCAO. The levels of TGF-ß2 and -ß3 decreased at subsequent time points. Permanent MCAO further elevated the levels of all 3 subtypes of TGF-ßs suggesting that reperfusion is not a major factor in their induction. TGF-ß1 did not co-localize with either Fos or ATF-3, while the co-localization of TGF-ß2 with Fos but not with ATF-3 suggests that cortical spreading depolarization, but not damage to neural processes, might be the mechanism of induction for TGF-ß2. The results imply that endogenous TGF-ßs are induced by different mechanisms following an ischemic attack in the brain suggesting that they are involved in distinct spatially and temporally regulated inflammatory and neuroprotective processes.


Assuntos
Encéfalo/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Imuno-Histoquímica , Hibridização In Situ , Masculino , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA