RESUMO
Biomimetics is a design principle within chemistry, biology, and engineering, but chemistry biomimetic approaches have been generally limited to emulating nature's chemical toolkit while emulation of nature's physical toolkit has remained largely unexplored. To begin to explore this, we designed biophysically mimetic microfluidic reactors with characteristic length scales and shear stresses observed within capillaries. We modeled the effect of shear with molecular dynamics studies and showed that this induces specific normally buried residues to become solvent accessible. We then showed using kinetics experiments that rates of reaction of these specific residues in fact increase in a shear-dependent fashion. We applied our results in the creation of a new microfluidic approach for the multidimensional study of cysteine biomarkers. Finally, we used our approach to establish dissociation of the therapeutic antibody trastuzumab in a reducing environment. Our results have implications for the efficacy of existing therapeutic antibodies in blood plasma as well as suggesting in general that biophysically mimetic chemistry is exploited in biology and should be explored as a research area.
Assuntos
BiomiméticaRESUMO
The aberrant aggregation of proteins is a key molecular event in the development and progression of a wide range of neurodegenerative disorders. We have shown previously that squalamine and trodusquemine, two natural products in the aminosterol class, can modulate the aggregation of the amyloid-ß peptide (Aß) and of α-synuclein (αS), which are associated with Alzheimer's and Parkinson's diseases. In this work, we expand our previous analyses to two squalamine derivatives, des-squalamine and α-squalamine, obtaining further insights into the mechanism by which aminosterols modulate Aß and αS aggregation. We then characterize the ability of these small molecules to alter the physicochemical properties of stabilized oligomeric species in vitro and to suppress the toxicity of these aggregates to varying degrees toward human neuroblastoma cells. We found that, despite the fact that these aminosterols exert opposing effects on Aß and αS aggregation under the conditions that we tested, the modifications that they induced to the toxicity of oligomers were similar. Our results indicate that the suppression of toxicity is mediated by the displacement of toxic oligomeric species from cellular membranes by the aminosterols. This study, thus, provides evidence that aminosterols could be rationally optimized in drug discovery programs to target oligomer toxicity in Alzheimer's and Parkinson's diseases.
RESUMO
The self-assembly of α-synuclein (αS) into intraneuronal inclusion bodies is a key characteristic of Parkinson's disease. To define the nature of the species giving rise to neuronal damage, we have investigated the mechanism of action of the main αS populations that have been observed to form progressively during fibril growth. The αS fibrils release soluble prefibrillar oligomeric species with cross-ß structure and solvent-exposed hydrophobic clusters. αS prefibrillar oligomers are efficient in crossing and permeabilize neuronal membranes, causing cellular insults. Short fibrils are more neurotoxic than long fibrils due to the higher proportion of fibrillar ends, resulting in a rapid release of oligomers. The kinetics of released αS oligomers match the observed kinetics of toxicity in cellular systems. In addition to previous evidence that αS fibrils can spread in different brain areas, our in vitro results reveal that αS fibrils can also release oligomeric species responsible for an immediate dysfunction of the neurons in the vicinity of these species.
Assuntos
Amiloide/metabolismo , Corpos de Inclusão/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Amiloide/química , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Cinética , Microscopia Confocal , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas , Multimerização Proteica , Ratos Sprague-Dawley , alfa-Sinucleína/químicaRESUMO
Aberrant soluble oligomers formed by the amyloid-ß peptide (Aß) are major pathogenic agents in the onset and progression of Alzheimer's disease. A variety of biomolecules can influence the formation of these oligomers in the brain, although their mechanisms of action are still largely unknown. Here, we studied the effects on Aß aggregation of DOPAL, a reactive catecholaldehyde intermediate of dopamine metabolism. We found that DOPAL is able to stabilize Aß oligomeric species, including dimers and trimers, that exert toxic effects on human neuroblastoma cells, in particular increasing cytosolic calcium levels and promoting the generation of reactive oxygen species. These results reveal an interplay between Aß aggregation and key biochemical processes regulating cellular homeostasis in the brain.
Assuntos
Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Dopamina/metabolismo , Doença de Alzheimer/metabolismo , Linhagem Celular Tumoral , Escherichia coli , HumanosRESUMO
The onset and progression of numerous protein misfolding diseases are associated with the presence of oligomers formed during the aberrant aggregation of several different proteins, including amyloid-ß (Aß) in Alzheimer's disease and α-synuclein (αS) in Parkinson's disease. These small, soluble aggregates are currently major targets for drug discovery. In this study, we show that trodusquemine, a naturally-occurring aminosterol, markedly reduces the cytotoxicity of αS, Aß and HypF-N oligomers to human neuroblastoma cells by displacing the oligomers from cell membranes in the absence of any substantial morphological and structural changes to the oligomers. These results indicate that the reduced toxicity results from a mechanism that is common to oligomers from different proteins, shed light on the origin of the toxicity of the most deleterious species associated with protein aggregation and suggest that aminosterols have the therapeutically-relevant potential to protect cells from the oligomer-induced cytotoxicity associated with numerous protein misfolding diseases.
Assuntos
Membrana Celular/metabolismo , Colestanos/farmacologia , Dobramento de Proteína , Multimerização Proteica , Espermina/análogos & derivados , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Fenômenos Biofísicos/efeitos dos fármacos , Carboxil e Carbamoil Transferases/química , Carboxil e Carbamoil Transferases/toxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/toxicidade , Humanos , Dobramento de Proteína/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Espermina/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/toxicidadeRESUMO
Human cystatin C (HCC), a cysteine-protease inhibitor, exists as a folded monomer under physiological conditions but has the ability to self-assemble via domain swapping into multimeric states, including oligomers with a doughnut-like structure. The structure of the monomeric HCC has been solved by X-ray crystallography, and a covalently linked version of HCC (stab-1 HCC) is able to form stable oligomeric species containing 10-12 monomeric subunits. We have performed molecular modeling, and in conjunction with experimental parameters obtained from atomic force microscopy (AFM), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements, we observe that the structures are essentially flat, with a height of about 2 nm, and the distance between the outer edge of the ring and the edge of the central cavity is ~5.1 nm. These dimensions correspond to the height and diameter of one stab-1 HCC subunit and we present a dodecamer model for stabilized cystatin C oligomers using molecular dynamics simulations and experimentally measured parameters. Given that oligomeric species in protein aggregation reactions are often transient and very highly heterogeneous, the structural information presented here on these isolated stab-1 HCC oligomers may be useful to further explore the physiological relevance of different structural species of cystatin C in relation to protein misfolding disease.
Assuntos
Cistatina C/química , Simulação de Dinâmica Molecular , Humanos , Dobramento de Proteína , Multimerização Proteica , Estabilidade ProteicaRESUMO
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-ß architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Assuntos
Doença de Alzheimer/metabolismo , Amiloide/química , Amiloide/metabolismo , Amiloidose , Cátions Bivalentes/química , Reagentes de Ligações Cruzadas/química , Humanos , Modelos Moleculares , Conformação Molecular , Impressão Tridimensional , Dobramento de Proteína , Processamento de Proteína Pós-TraducionalRESUMO
Caenorhabditis elegans is a valuable model organism in biomedical research that has led to major discoveries in the fields of neurodegeneration, cancer and aging. Because movement phenotypes are commonly used and represent strong indicators of C. elegans fitness, there is an increasing need to replace manual assessments of worm motility with automated measurements to increase throughput and minimize observer biases. Here, we provide a protocol for the implementation of the improved wide field-of-view nematode tracking platform (WF-NTP), which enables the simultaneous analysis of hundreds of worms with respect to multiple behavioral parameters. The protocol takes only a few hours to complete, excluding the time spent culturing C. elegans, and includes (i) experimental design and preparation of samples, (ii) data recording, (iii) software management with appropriate parameter choices and (iv) post-experimental data analysis. We compare the WF-NTP with other existing worm trackers, including those having high spatial resolution. The main benefits of WF-NTP relate to the high number of worms that can be assessed at the same time on a whole-plate basis and the number of phenotypes that can be screened for simultaneously.
Assuntos
Bioensaio/instrumentação , Caenorhabditis elegans/fisiologia , Movimento , Fenótipo , AnimaisRESUMO
The spontaneous assembly of proteins into amyloid fibrils is a phenomenon central to many increasingly common and currently incurable human disorders, including Alzheimer's and Parkinson's diseases. Oligomeric species form transiently during this process and not only act as essential intermediates in the assembly of new filaments but also represent major pathogenic agents in these diseases. While amyloid fibrils possess a common, defining set of physicochemical features, oligomers, by contrast, appear much more diverse, and their commonalities and differences have hitherto remained largely unexplored. Here, we use the framework of chemical kinetics to investigate their dynamical properties. By fitting experimental data for several unrelated amyloidogenic systems to newly derived mechanistic models, we find that oligomers present with a remarkably wide range of kinetic and thermodynamic stabilities but that they possess two properties that are generic: they are overwhelmingly nonfibrillar, and they predominantly dissociate back to monomers rather than maturing into fibrillar species. These discoveries change our understanding of the relationship between amyloid oligomers and amyloid fibrils and have important implications for the nature of their cellular toxicity.
Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Cinética , Doença de Alzheimer , Peptídeos beta-Amiloides/química , Amiloidose , Modelos Teóricos , Agregados Proteicos , TermodinâmicaRESUMO
The misfolding of proteins is now recognized to be the origin of a large number of medical disorders. One particularly important group of such disorders is associated with the aggregation of misfolded proteins into amyloid structures, and includes conditions ranging from Alzheimer's and Parkinson's diseases to type II diabetes. Such conditions already affect over 500 million people in the world, a number that is rising rapidly, and at present these disorders cannot be effectively treated or prevented. This review provides an overview of this field of science and discusses recent progress in understanding the nature and properties of the amyloid state, the kinetics and mechanism governing its formation, the origins of its links with disease, and the manner in which its formation may be inhibited or suppressed. This latter topic is of particular importance, both to enhance our knowledge of the maintenance of protein homeostasis in living organisms and also to address the development of therapeutic strategies through which to combat the loss of homeostasis and the associated onset and progression of disease.
Assuntos
Amiloide/metabolismo , Agregação Patológica de Proteínas , Amiloidose/terapia , Humanos , Cinética , ProteostaseRESUMO
The aggregation of proteins into fibrillar structures is a central process implicated in the onset and development of several devastating neuro-degenerative diseases, but can, in contrast to these pathological roles, also fulfil important biological functions. In both scenarios, an understanding of the mechanisms by which soluble proteins convert to their fibrillar forms represents a fundamental objective for molecular sciences. This chapter details the different classes of microscopic processes responsible for this conversion and discusses how they can be described by a mathematical formulation of the aggregation kinetics. We present easily accessible experimental quantities that allow the determination of the dominant pathways of aggregation, as well as a general strategy to obtain detailed solutions to the kinetic rate laws that yield the microscopic rate constants of the individual processes of nucleation and growth. This chapter discusses a framework for a structured approach to address key questions regarding the dynamics of protein aggregation and shows how the use of chemical kinetics to tackle complex biophysical systems can lead to a deeper understanding of the underlying physical and chemical principles.
Assuntos
Fenômenos Biofísicos , Peptídeos , Cinética , Peptídeos/química , Peptídeos/metabolismo , Agregação Patológica de Proteínas , Proteínas/química , Proteínas/metabolismoRESUMO
TAR DNA-binding protein 43 (TDP-43) has been identified as the major constituent of the proteinaceous inclusions that are characteristic of most forms of amyotrophic lateral sclerosis (ALS) and ubiquitin positive frontotemporal lobar degeneration (FTLD). Wild type TDP-43 inclusions are a pathological hallmark of >95% of patients with sporadic ALS and of the majority of familial ALS cases, and they are also found in a significant proportion of FTLD cases. ALS is the most common form of motor neuron disease, characterized by progressive weakness and muscular wasting, and typically leads to death within a few years of diagnosis. To determine how the translocation and misfolding of TDP-43 contribute to ALS pathogenicity, it is crucial to define the dynamic behavior of this protein within the cellular environment. It is therefore necessary to develop cell models that allow the location of the protein to be defined. We report the use of TDP-43 with a tetracysteine tag for visualization using fluorogenic biarsenical compounds and show that this model displays features of ALS observed in other cell models. We also demonstrate that this labeling procedure enables live-cell imaging of the translocation of the protein from the nucleus into the cytosol.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cisteína/química , Proteínas de Ligação a DNA/metabolismo , Fluoresceínas/química , Modelos Biológicos , Compostos Organometálicos/química , Sitios de Sequências Rotuladas , Sequência de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Eletroporação , Corantes Fluorescentes , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Cinética , Imagem Óptica , Transporte Proteico , Imagem com Lapso de Tempo , TransfecçãoRESUMO
Protein behavior is closely regulated by a plethora of post-translational modifications (PTMs). It is therefore desirable to develop approaches to design rational PTMs to modulate specific protein functions. Here, we report one such method, and we illustrate its successful implementation by potentiating the anti-aggregation activity of a molecular chaperone. Molecular chaperones are a multifaceted class of proteins essential to protein homeostasis, and one of their major functions is to combat protein misfolding and aggregation, a phenomenon linked to a number of human disorders. In this work, we conjugated a small-molecule inhibitor of the aggregation of α-synuclein, a process associated with Parkinson's disease (PD), to a specific cysteine residue on human Hsp70, a molecular chaperone with five free cysteines. We show that this regioselective conjugation augments in vitro the anti-aggregation activity of Hsp70 in a synergistic manner. This Hsp70 variant also displays in vivo an enhanced suppression of α-synuclein aggregation and its associated toxicity in a Caenorhabditis elegans model of PD.
RESUMO
The nematode worm Caenorhabditis elegans has emerged as an important model organism in the study of the molecular mechanisms of protein misfolding diseases associated with amyloid formation because of its small size, ease of genetic manipulation, and optical transparency. Obtaining a reliable and quantitative read-out of protein aggregation in this system, however, remains a challenge. To address this problem, we here present a fast time-gated fluorescence lifetime imaging (TG-FLIM) method and show that it provides functional insights into the process of protein aggregation in living animals by enabling the rapid characterization of different types of aggregates. Specifically, in longitudinal studies of C. elegans models of Parkinson's and Huntington's diseases, we observed marked differences in the aggregation kinetics and the nature of the protein inclusions formed by α-synuclein and polyglutamine. In particular, we found that α-synuclein inclusions do not display amyloid-like features until late in the life of the worms, whereas polyglutamine forms amyloid characteristics rapidly in early adulthood. Furthermore, we show that the TG-FLIM method is capable of imaging live and non-anaesthetized worms moving in specially designed agarose microchambers. Taken together, our results show that the TG-FLIM method enables high-throughput functional imaging of living C. elegans that can be used to study in vivo mechanisms of protein aggregation and that has the potential to aid the search for therapeutic modifiers of protein aggregation and toxicity.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Peptídeos/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Envelhecimento , Amiloide/química , Amiloide/metabolismo , Animais , Proteínas de Caenorhabditis elegans/análise , Imagem Óptica , Peptídeos/análise , alfa-Sinucleína/análiseRESUMO
The aggregation of α-synuclein, a protein involved in neurotransmitter release at presynaptic terminals, is associated with a range of highly debilitating neurodegenerative conditions, most notably Parkinson's disease. Intraneuronal inclusion bodies, primarily composed of α-synuclein fibrils, are the major histopathological hallmarks of these disorders, although small oligomeric assemblies are believed to play a crucial role in neuronal impairment. We have probed the mechanism of neurotoxicity of α-synuclein oligomers isolated in vitro using antibodies targeting the N-terminal region of the protein and found that the presence of the antibody resulted in a substantial reduction of the damage induced by the aggregates when incubated with primary cortical neurons and neuroblastoma cells. We observed a similar behavior in vivo using a strain of C. elegans overexpressing α-synuclein, where the aggregation process itself is also partially inhibited as a result of incubation with the antibodies. The similar effects of the antibodies in reducing the toxicity of the aggregated species formed in vitro and in vivo provide evidence for a common origin of cellular impairment induced by α-synuclein aggregates.
Assuntos
Anticorpos/imunologia , Biopolímeros/toxicidade , Sondas Moleculares , alfa-Sinucleína/toxicidade , Animais , Biopolímeros/imunologia , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Humanos , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/imunologiaRESUMO
Transient oligomeric species formed during the aggregation process of the 42-residue form of the amyloid-ß peptide (Aß42) are key pathogenic agents in Alzheimer's disease (AD). To investigate the relationship between Aß42 aggregation and its cytotoxicity and the influence of a potential drug on both phenomena, we have studied the effects of trodusquemine. This aminosterol enhances the rate of aggregation by promoting monomer-dependent secondary nucleation, but significantly reduces the toxicity of the resulting oligomers to neuroblastoma cells by inhibiting their binding to the cellular membranes. When administered to a C. elegans model of AD, we again observe an increase in aggregate formation alongside the suppression of Aß42-induced toxicity. In addition to oligomer displacement, the reduced toxicity could also point towards an increased rate of conversion of oligomers to less toxic fibrils. The ability of a small molecule to reduce the toxicity of oligomeric species represents a potential therapeutic strategy against AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Colestanos/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Espermina/análogos & derivados , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Caenorhabditis elegans , Linhagem Celular Tumoral , Colestanos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fragmentos de Peptídeos/efeitos dos fármacos , Espermina/farmacologia , Espermina/uso terapêuticoRESUMO
The misfolding and aggregation of proteins into linear fibrils is widespread in human biology, for example, in connection with amyloid formation and the pathology of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The oligomeric species that are formed in the early stages of protein aggregation are of great interest, having been linked with the cellular toxicity associated with these conditions. However, these species are not characterized in any detail experimentally, and their properties are not well understood. Many of these species have been found to have approximately spherical morphology and to be held together by hydrophobic interactions. We present here an analytical statistical mechanical model of globular oligomer formation from simple idealized amphiphilic protein monomers and show that this correlates well with Monte Carlo simulations of oligomer formation. We identify the controlling parameters of the model, which are closely related to simple quantities that may be fitted directly from experiment. We predict that globular oligomers are unlikely to form at equilibrium in many polypeptide systems but instead form transiently in the early stages of amyloid formation. We contrast the globular model of oligomer formation to a well-established model of linear oligomer formation, highlighting how the differing ensemble properties of linear and globular oligomers offer a potential strategy for characterizing oligomers from experimental measurements.
Assuntos
Amiloide/química , Modelos Estatísticos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Simulação de Dinâmica Molecular , Método de Monte CarloRESUMO
Therapeutics designed to target α-synuclein (α-syn) aggregation may be critical in halting the progression of pathology in Parkinson's disease (PD) patients. Nanobodies are single-domain antibody fragments that bind with antibody specificity, but allow readier genetic engineering and delivery. When expressed intracellularly as intrabodies, anti-α-syn nanobodies fused to a proteasome-targeting proline, aspartate or glutamate, serine, and threonine (PEST) motif can modulate monomeric concentrations of target proteins. Here we aimed to validate and compare the in vivo therapeutic potential of gene therapy delivery of two proteasome-directed nanobodies selectively targeting α-syn in a synuclein overexpression-based PD model: VH14*PEST (non-amyloid component region) and NbSyn87*PEST (C-terminal region). Stereotaxic injections of adeno-associated viral 5-α-syn (AAV5-α-syn) into the substantia nigra (SN) were performed in Sprague-Dawley rats that were sorted into three cohorts based on pre-operative behavioral testing. Rats were treated with unilateral SN injections of vectors for VH14*PEST, NbSyn87*PEST, or injected with saline 3 weeks post lesion. Post-mortem assessments of the SN showed that both nanobodies markedly reduced the level of phosphorylated Serine-129 α-syn labeling relative to saline-treated animals. VH14*PEST showed considerable maintenance of striatal dopaminergic tone in comparison to saline-treated and NbSyn87*PEST-treated animals as measured by tyrosine hydroxylase immunoreactivity (optical density), DAT immunoreactivity (optical density), and dopamine concentration (high-performance liquid chromatography). Microglial accumulation and inflammatory response, assessed by stereological counts of Iba-1-labeled cells, was modestly increased in NbSyn87*PEST-injected rats but not in VH14*PEST-treated or saline-treated animals. Modest behavioral rescue was also observed, although there was pronounced variability among individual animals. These data validate in vivo therapeutic efficacy of vector-delivered intracellular nanobodies targeting α-syn misfolding and aggregation in synucleinopathies such as PD.
RESUMO
Basosquamous carcinoma (BSC) is an uncommon skin malignancy with significant invasive and metastatic potential. There are currently no clear management guidelines. This study evaluates the management and outcomes of patients diagnosed with BSC over a 7-year period. We present an evidence-based unit protocol for the management of BSC. All patients treated for BSC between 2009 and 2015 were reviewed. Data collected included patient demographics, tumour-specific information, management strategy, presence of recurrence or metastasis, and details of follow-up. 74 patients were identified, making this one of the largest cohorts of BSC patients reported. Mean age at diagnosis was 75.4 years, with a male:female ratio of 1.6:1. The most common tumour site was the head and neck (n=43, 58.1%). All tumours were graded at pT1 (n=51) or pT2 (n=23). Inadequate excision occurred in 17 patients (23%). Mean excision margins were >4mm peripherally and deep. Inadequately excised BSCs were further treated with wide local excision (n=6) or radiotherapy (n=5), or both (n=1). There were no cases of local recurrence or metastatic disease. This study demonstrates a cohort of patients with BSCs that appear less aggressive than previously reported. Current management with surgical excision appears to produce adequate results. However, an evidence-based guideline is still lacking.
RESUMO
Small oligomers formed during the aggregation of certain peptides and proteins are highly cytotoxic in numerous neurodegenerative disorders. Because of their transient nature and conformational heterogeneity, however, the structural and biological features of these oligomers are still poorly understood. Here, we describe a method of generating stable oligomers formed by the Alzheimer's Aß40 peptide by carrying out an aggregation reaction in the presence of zinc ions. The resulting oligomers are amenable to detailed biophysical and biological characterization, which reveals a homogeneous population with small size, high cross-ß sheet structure content, and extended hydrophobic surface patches. We also show that these oligomers decrease the viability of neuroblastoma cells and impair the motility of C. elegans. The availability of these oligomers offers novel opportunities for studying the mechanisms of Aß40 toxicity in vitro and in cellular and animal models of Alzheimer's disease.