Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(35): 9316-9327, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712025

RESUMO

Native mass spectrometry is a potent method for characterizing biomacromolecular assemblies. A critical aspect to extracting accurate mass information is the correct inference of the ion ensemble charge states. While a variety of experimental strategies and algorithms have been developed to facilitate this, virtually all approaches rely on the implicit assumption that any peaks in a native mass spectrum can be directly attributed to an underlying charge state distribution. Here, we demonstrate that this paradigm breaks down for several types of macromolecular protein complexes due to the intrinsic heterogeneity induced by the stochastic nature of their assembly. Utilizing several protein assemblies of adeno-associated virus capsids and ferritin, we demonstrate that these particles can produce a variety of unexpected spectral appearances, some of which appear superficially similar to a resolved charge state distribution. When interpreted using conventional charge inference strategies, these distorted spectra can lead to substantial errors in the calculated mass (up to ∼5%). We provide a novel analytical framework to interpret and extract mass information from these spectra by combining high-resolution native mass spectrometry, single particle Orbitrap-based charge detection mass spectrometry, and sophisticated spectral simulations based on a stochastic assembly model. We uncover that these mass spectra are extremely sensitive to not only mass heterogeneity within the subunits, but also to the magnitude and width of their charge state distributions. As we postulate that many protein complexes assemble stochastically, this framework provides a generalizable solution, further extending the usability of native mass spectrometry in the characterization of biomacromolecular assemblies.

2.
Eur Respir J ; 61(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080573

RESUMO

Several reports have highlighted a potential role of autoreactive B-cells and autoantibodies that correlates with increased disease severity in patients with idiopathic pulmonary fibrosis (IPF). Here we show that patients with IPF have an altered B-cell phenotype and that those subjects who have autoantibodies against the intermediate filament protein periplakin (PPL) have a significantly worse outcome in terms of progression-free survival. Using a mouse model of lung fibrosis, we demonstrate that introducing antibodies targeting the endogenous protein PPL (mimicking naturally occurring autoantibodies seen in patients) directly in the lung increases lung injury, inflammation, collagen and fibronectin expression through direct activation of follicular dendritic cells, which in turn activates and drives proliferation of fibroblasts. This fibrocyte population was also observed in fibrotic foci of patients with IPF and was increased in peripheral blood of IPF patients compared to aged-matched controls. This study reiterates the complex and heterogeneous nature of IPF, identifying new pathways that may prove suitable for therapeutic intervention.


Assuntos
Autoanticorpos , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/metabolismo , Progressão da Doença , Fibroblastos/metabolismo
3.
Gene Ther ; 30(1-2): 132-141, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35637286

RESUMO

Challenges in obtaining efficient transduction of brain and spinal cord following systemic AAV delivery have led to alternative administration routes being used in clinical trials that directly infuse the virus into the CNS. However, data comparing different direct AAV injections into the brain remain limited making it difficult to choose optimal routes. Here we tested both AAV9-egfp and AAV9-fLuc delivery via intrastriatal (IST), intracisterna magna (ICM) and lumbar intrathecal (LIT) routes in adult rats and assessed vector distribution and transduction in brain, spinal cord and peripheral tissues. We find that IST infusion leads to robust transgene expression in the striatum, thalamus and cortex with lower peripheral tissue transduction and anti-AAV9 capsid titers compared to ICM or LIT. ICM delivery provided strong GFP and luciferase expression across more brain regions than the other routes and similar expression in the spinal cord to LIT injections, which itself largely failed to transduce the rat brain. Our data highlight the strengths and weaknesses of each direct CNS delivery route which will help with future clinical targeting.


Assuntos
Técnicas de Transferência de Genes , Medula Espinal , Ratos , Animais , Transdução Genética , Medula Espinal/metabolismo , Encéfalo/metabolismo , Transgenes , Vetores Genéticos/genética , Dependovirus/genética , Dependovirus/metabolismo
4.
MAbs ; 13(1): 1857100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397194

RESUMO

Preclinical studies of PD-L1 and CTLA-4 blockade have relied heavily on mouse syngeneic tumor models with intact immune systems, which facilitate dissection of immunosuppressive mechanisms in the tumor microenvironment. Commercially developed monoclonal antibodies (mAbs) targeting human PD-L1, PD-1, and CTLA-4 may not demonstrate cross-reactive binding to their mouse orthologs, and surrogate anti-mouse antibodies are often used in their place to inhibit these immune checkpoints. In each case, multiple choices exist for surrogate antibodies, which differ with respect to species of origin, affinity, and effector function. To develop relevant murine surrogate antibodies for the anti-human PD-L1 mAb durvalumab and the anti-human CTLA-4 mAb tremelimumab, rat/mouse chimeric or fully murine mAbs engineered for reduced effector function were developed and compared with durvalumab and tremelimumab. Characterization included determination of target affinity, in vivo effector function, pharmacokinetic profile, and anti-tumor efficacy in mouse syngeneic tumor models. Results showed that anti-PD-L1 and anti-CTLA-4 murine surrogates with pharmacologic properties similar to those of durvalumab and tremelimumab demonstrated anti-tumor activity in a subset of commonly used mouse syngeneic tumor models. This activity was not entirely dependent on antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis effector function, or regulatory T-cell depletion, as antibodies engineered to lack these features showed activity in models historically sensitive to checkpoint inhibition, albeit at a significantly lower level than antibodies with intact effector function.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/imunologia , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Ratos Sprague-Dawley , Linfócitos T Reguladores/imunologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
5.
Mol Ther Methods Clin Dev ; 19: 330-340, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33145369

RESUMO

The recombinant adeno-associated virus (AAV) vector is one of the most utilized viral vectors in gene therapy due to its robust, long-term in vivo transgene expression and low toxicity. One major hurdle for clinical AAV applications is large-scale manufacturing. In this regard, the baculovirus-based AAV production system is highly attractive due to its scalability and predictable biosafety. Here, we describe a simple method to improve the baculovirus-based AAV production using the ExpiSf Baculovirus Expression System with a chemically defined medium for suspension culture of high-density ExpiSf9 cells. Baculovirus-infected ExpiSf9 cells produced up to 5 × 1011 genome copies of highly purified AAV vectors per 1 mL of suspension culture, which is up to a 19-fold higher yield than the titers we obtained from the conventional Sf9 cell-based system. When mice were administered the same dose of AAV vectors, we saw comparable transduction efficiency and biodistributions between the vectors made in ExpiSf9 and Sf9 cells. Thus, the ExpiSf Baculovirus Expression System would support facile and scalable AAV manufacturing amenable for preclinical and clinical applications.

6.
MAbs ; 1(6): 552-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20068388

RESUMO

Apoptosis through the TRAIL receptor pathway can be induced via agonistic IgG to either TRAIL-R1 or TRAIL-R2. Here we describe the use of phage display to isolate a substantive panel of fully human anti-TRAIL receptor single chain Fv fragments (scFvs); 234 and 269 different scFvs specific for TRAIL-R1 and TRAIL-R2 respectively. In addition, 134 different scFvs that were cross-reactive for both receptors were isolated. To facilitate screening of all 637 scFvs for potential agonistic activity in vitro, a novel high-throughput surrogate apoptosis assay was developed. Ten TRAIL-R1 specific scFv and 6 TRAIL-R2 specific scFv were shown to inhibit growth of tumor cells in vitro in the absence of any cross-linking agents. These scFv were all highly specific for either TRAIL-R1 or TRAIL-R2, potently inhibited tumor cell proliferation, and were antagonists of TRAIL binding. Moreover, further characterization of TRAIL-R1 agonistic scFv demonstrated significant anti-tumor activity when expressed and purified as a monomeric Fab fragment. Thus, scFv and Fab fragments, in addition to whole IgG, can be agonistic and induce tumor cell death through specific binding to either TRAIL-R1 or TRAIL-R2. These potent agonistic scFv were all isolated directly from the starting phage antibody library and demonstrated significant tumor cell killing properties without any requirement for affinity maturation. Some of these selected scFv have been converted to IgG format and are being studied extensively in clinical trials to investigate their potential utility as human monoclonal antibody therapeutics for the treatment of human cancer.


Assuntos
Fragmentos Fab das Imunoglobulinas/farmacologia , Imunoterapia , Neoplasias/terapia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Anticorpos de Cadeia Única/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/genética , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Ligação Competitiva , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Engenharia Genética , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/isolamento & purificação
7.
Arthritis Rheum ; 48(11): 3253-65, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14613291

RESUMO

OBJECTIVE: To identify and characterize a fully human antibody directed against B lymphocyte stimulator (BLyS), a tumor necrosis factor-related cytokine that plays a critical role in the regulation of B cell maturation and development. Elevated levels of BLyS have been implicated in the pathogenesis of autoimmune diseases. METHODS: A human phage display library was screened for antibodies against human BLyS. A human monoclonal antibody, LymphoStat-B, specific for human BLyS was obtained from the library screening and subsequent affinity optimization mutagenesis. The antibody was tested for inhibition of human BLyS in vitro and in an in vivo murine model. Additionally, the consequences of BLyS inhibition were tested in vivo by administration of LymphoStat-B to cynomolgus monkeys. RESULTS: LymphoStat-B bound with high affinity to human BLyS and inhibited the binding of BLyS to its 3 receptors, TACI, BCMA, and BLyS receptor 3/BAFF-R. LymphoStat-B potently inhibited BLyS-induced proliferation of B cells in vitro, and administration of LymphoStat-B to mice prevented human BLyS-induced increases in splenic B cell numbers and IgA titers. In cynomolgus monkeys, administration of LymphoStat-B resulted in decreased B cell representation in both spleen and mesenteric lymph nodes. CONCLUSION: A fully human monoclonal antibody has been isolated that binds to BLyS with high affinity and neutralizes human BLyS bioactivity in vitro and in vivo. Administration of this antibody to cynomolgus monkeys resulted in B cell depletion in spleen and lymph node. This antibody may prove therapeutically useful in the treatment of autoimmune diseases in humans.


Assuntos
Anticorpos Monoclonais/biossíntese , Linfócitos B/metabolismo , Proteínas de Membrana , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Receptor do Fator Ativador de Células B , Antígeno de Maturação de Linfócitos B , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Divisão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Injeções Intravenosas , Leucócitos Mononucleares/efeitos dos fármacos , Linfonodos/citologia , Linfonodos/efeitos dos fármacos , Macaca fascicularis , Masculino , Camundongos , Mutagênese Sítio-Dirigida , Testes de Neutralização , Receptores do Fator de Necrose Tumoral/administração & dosagem , Receptores do Fator de Necrose Tumoral/imunologia , Baço/citologia , Baço/efeitos dos fármacos , Proteína Transmembrana Ativadora e Interagente do CAML
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA