Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 12(21): e029917, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37889179

RESUMO

Background Intracranial aneurysms (IAs) are more prevalent in women than men, and aneurysmal subarachnoid hemorrhage disproportionately affects postmenopausal women. These sex differences suggest estrogen protects against IA progression that can lead to rupture, but the underlying mechanisms are not fully understood. Although studies have demonstrated estrogen regulates inflammatory processes that contribute to IA pathogenesis, the role of neutrophils remains to be characterized. Using a murine model, we tested our hypothesis that neutrophils contribute to IA pathophysiology in an estrogen-dependent manner. Methods and Results We compared neutrophil infiltration in C57BL/6 female mice that develop IAs to those with a normal circle of Willis. Next, we investigated the estrogen-dependent role of neutrophils in IA formation, rupture, and symptom-free survival using a neutrophil depletion antibody. Finally, we studied the role of neutrophil extracellular trap formation (NETosis) as an underlying mechanism of aneurysm progression. Mice that developed aneurysms had increased neutrophil infiltration compared with those with a normal circle of Willis. In estrogen-deficient female mice, both neutrophil depletion and NETosis inhibition decreased aneurysm rupture. In estrogen-deficient female mice treated with estrogen rescue and estrogen-intact female mice, neither neutrophil depletion nor NETosis inhibition affected IA formation, rupture, or symptom-free survival. Conclusions Neutrophils contribute to aneurysm rupture in an estrogen-dependent manner. NETosis appears to be an underlying mechanism for neutrophil-mediated IA rupture in estrogen deficiency. Targeting NETosis may lead to the development of novel therapeutics to protect against IA rupture in the setting of estrogen deficiency.


Assuntos
Aneurisma Roto , Armadilhas Extracelulares , Aneurisma Intracraniano , Humanos , Feminino , Masculino , Animais , Camundongos , Neutrófilos , Camundongos Endogâmicos C57BL , Estrogênios
2.
Transl Stroke Res ; 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470917

RESUMO

Maladaptive inflammation underlies the formation and rupture of human intracranial aneurysms. There is a growing body of evidence that anti-inflammatory pharmaceuticals may beneficially modulate this process. Clopidogrel (Plavix) is a commonly used irreversible P2Y12 receptor antagonist with anti-inflammatory activity. In this paper, we investigate whether clopidogrel is associated with the likelihood of aneurysm rupture in a multi-institutional propensity-matched cohort analysis. Patients presenting for endovascular treatment of their unruptured intracranial aneurysms and those presenting with aneurysm rupture between 2015 and 2019 were prospectively identified at two quaternary referral centers. Patient demographics, comorbidities, and medication usage at the time of presentation were collected. Patients taking clopidogrel or not taking clopidogrel were matched in a 1:1 fashion with respect to location, age, smoking status, aneurysm size, aspirin usage, and hypertension. A total of 1048 patients with electively treated aneurysms or subarachnoid hemorrhages were prospectively identified. Nine hundred twenty-one patients were confirmed to harbor aneurysms during catheter-based diagnostic angiography. A total of 172/921 (19%) patients were actively taking clopidogrel at the time of presentation. Three hundred thirty-two patients were matched in a 1:1 fashion. A smaller proportion of patients taking clopidogrel at presentation had ruptured aneurysms than those who were not taking clopidogrel (6.6% vs 23.5%, p < .0001). Estimated treatment effect analysis demonstrated that clopidogrel usage decreased aneurysm rupture risk by 15%. We present, to the best of our knowledge, the first large-scale multi-institutional analysis suggesting clopidogrel use is protective against intracranial aneurysm rupture. It is our hope that these data will guide future investigation, revealing the pathophysiologic underpinning of this association.

3.
J Neurointerv Surg ; 15(7): 689-694, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35609975

RESUMO

BACKGROUND: Monocyte chemoattractant protein 1 (MCP-1) and osteopontin (OPN) have been identified separately as key mediators of the aneurysm healing process following coil embolization in the rodent model. The ability of protein coated coils to accelerate this process is currently unknown. OBJECTIVE: To create coils coated with both MCP-1 and OPN to target aneurysm healing. METHODS: We used a polymer (poly(glycolide-co-caprolactone)) (Rao pharmaceuticals) (CG910) to test whether coils could be dual coated with active proteins with sequential reliable release. Coils were coated with poly-DL-lactic glycolic acid (PLGA), CG910, and subsequently dipped with protein OPN (inner layer for delayed release) and MCP-1 (outer layer for initial release). Release assays were used to measure protein elution from coils over time. To test in vivo feasibility, coated coils were implanted into carotid aneurysms to determine the effect on aneurysm healing. RESULTS: The in vitro protein release assay demonstrated a significant amount of OPN and MCP-1 release within 2 days. Using a 200 µg/µL solution of MCP-1 in phosphate-buffered saline, we showed that CG910 coated coils provide effective release of MCP over time. In the carotid aneurysm model, MCP-1 and OPN coated coils significantly increased tissue ingrowth (74% and 80%) compared with PLGA and CG910 coated coils alone (58% and 53%). To determine synergistic impact of dual coating, we measured ingrowth for MCP-1/OPN coils (63%) as well as overlap coefficients for NOX4 and NFκB with CD31. CONCLUSIONS: This study demonstrates that MCP-1 and OPN coated coils are viable and may promote early aneurysm healing. Dual coated coils may have synergistic benefit given different location of protein interaction measured in vivo. Further work is warranted.


Assuntos
Embolização Terapêutica , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/terapia , Ácido Láctico , Polímeros , Materiais Revestidos Biocompatíveis
4.
J Neurointerv Surg ; 15(11): 1105-1110, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36456184

RESUMO

BACKGROUND: The pathophysiology of brain injury after aneurysmal subarachnoid hemorrhage (aSAH) remains incompletely understood. Cerebral venous flow patterns may be a marker of hemodynamic disruptions after aneurysm rupture. We hypothesized that a decrease in venous filling after aSAH would predict cerebral ischemia and poor outcome. OBJECTIVE: To examine the hypotheses that venous filling as measured by the cortical venous opacification score (COVES) would (1) decrease after aSAH and (2) that decreased COVES would be associated with higher rates of hydrocephalus, vasospasm, delayed cerebral iscemia (DCI), and poor functional evaluation at outcome. METHODS: In this retrospective observational cohort study of consecutive patients with aSAH admitted to our tertiary care center between 2016 and 2018, we measured the COVES at admission and at subsequent CT angiography (CTA). We collected clinical variables and compared hydrocephalus, vasospasm, DCI, and outcome at discharge in patients with decrease in COVES with patients with stable COVES. RESULTS: A total of 22 patients were included in the analysis. COVES decreased from first CTA to second CTA in 11 (50%) patients, by an average of 1.1 points (P=0.01). Patients whose COVES decreased between admission and follow-up imaging were more likely to develop DCI (58% vs 0%, P=0.03) and have a poor outcome at discharge (100% vs 55%, P=0.03) than patients who had no change in COVES. aSAH severity was not associated with initial COVES, and there was no association between change in COVES and development of hydrocephalus or vasospasm. CONCLUSIONS: Development of decreased venous filling on CTA is associated with poor outcome after aSAH. This association suggests that venous hemodynamics may be reflective of, or contribute to, the pathophysiological mechanisms of brain injury after aSAH. Larger prospective studies are necessary to substantiate our findings.

5.
J Neuroinflammation ; 19(1): 228, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114540

RESUMO

BACKGROUND: Cerebral vasospasm (CV) can contribute to significant morbidity in subarachnoid hemorrhage (SAH) patients. A key unknown is how CV induction is triggered following SAH. METHODS: Human aneurysmal blood and cerebral spinal fluid were collected for evaluation. To confirm mechanism, c57/bl6 wild type and c57/bl6 IL-6 female knockout (KO) mice were utilized with groups: saline injected, SAH, SAH + IL-6 blockade, SAH IL-6 KO, SAH IL-6 KO + IL-6 administration, SAH + p-STAT3 inhibition. Dual-labeled microglia/myeloid mice were used to show myeloid diapedesis. For SAH, 50 µm blood was collected from tail puncture and administered into basal cisterns. IL-6 blockade was given at various time points. Various markers of neuroinflammation were measured with western blot and immunohistochemistry. Cerebral blood flow was also measured. Vasospasm was measured via cardiac injection of India ink/gelatin. Turning test and Garcia's modified SAH score were utilized. P < 0.05 was considered significant. RESULTS: IL-6 expression peaked 3 days following SAH (p < 0.05). Human IL-6 was increased in aneurysmal blood (p < 0.05) and in cerebral spinal fluid (p < 0.01). Receptor upregulation was periventricular and perivascular. Microglia activation following SAH resulted in increased caveolin 3 and myeloid diapedesis. A significant increase in BBB markers endothelin 1 and occludin was noted following SAH, but reduced with IL-6 blockade (p < 0.01). CV occurred 5 days post-SAH, but was absent in IL-6 KO mice and mitigated with IL-6 blockade (p < 0.05). IL-6 blockade, and IL-6 KO mitigated effects of SAH on cerebral blood flow (p < 0.05). SAH mice had impaired performance on turn test and poor modified Garcia scores compared to saline and IL-6 blockade. A distinct microglia phenotype was noted day 5 in the SAH group (overlap coefficients r = 0.96 and r = 0.94) for Arg1 and iNOS, which was altered by IL-6 blockade. Day 7, a significant increase in toll-like receptor 4 and Stat3 was noted. This was mitigated by IL-6 blockade and IL-6 KO, which also reduced Caspase 3 (p < 0.05). To confirm the mechanism, we developed a p-STAT3 inhibitor that targets the IL-6 pathway and this reduced NFΚB, TLR4, and nitrotyrosine (p < 0.001). Ventricular dilation and increased Tunel positivity was noted day 9, but resolved by IL-6 blockade (p < 0.05). CONCLUSION: Correlation between IL-6 and CV has been well documented. We show that a mechanistic connection exists via the p-STAT3 pathway, and IL-6 blockade provides benefit in reducing CV and its consequences mediated by myeloid cell origin diapedesis.


Assuntos
Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Animais , Caspase 3 , Caveolina 3 , Endotelina-1 , Feminino , Gelatina , Humanos , Interleucina-6 , Camundongos , Camundongos Knockout , Hemorragia Subaracnóidea/metabolismo , Receptor 4 Toll-Like , Vasoespasmo Intracraniano/tratamento farmacológico , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/metabolismo
6.
Nat Commun ; 13(1): 3555, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729113

RESUMO

Mechanistic models of how single cells respond to different perturbations can help integrate disparate big data sets or predict response to varied drug combinations. However, the construction and simulation of such models have proved challenging. Here, we developed a python-based model creation and simulation pipeline that converts a few structured text files into an SBML standard and is high-performance- and cloud-computing ready. We applied this pipeline to our large-scale, mechanistic pan-cancer signaling model (named SPARCED) and demonstrate it by adding an IFNγ pathway submodel. We then investigated whether a putative crosstalk mechanism could be consistent with experimental observations from the LINCS MCF10A Data Cube that IFNγ acts as an anti-proliferative factor. The analyses suggested this observation can be explained by IFNγ-induced SOCS1 sequestering activated EGF receptors. This work forms a foundational recipe for increased mechanistic model-based data integration on a single-cell level, an important building block for clinically-predictive mechanistic models.


Assuntos
Computação em Nuvem , Software , Proliferação de Células , Simulação por Computador , Transdução de Sinais
7.
J Neurointerv Surg ; 14(2): 179-183, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34215660

RESUMO

The placement of cervical and intracranial stents requires the administration of antiplatelet drugs to prevent thromboembolic complications. Ticagrelor has emerged as the most widely used alternative in clopidogrel non-responders owing to its potent antiplatelet effects. Because ticagrelor does not require hepatic activation, many neurointerventionalists choose to forgo laboratory testing of platelet inhibition. In rare instances, patients may not achieve adequate platelet inhibition following ticagrelor administration. In this paper we review the mechanism of action of ticagrelor and its use in cerebrovascular procedures. We present two cases of ticagrelor non-responsiveness from two high-volume cerebrovascular centers, discuss their management, and propose an algorithm for managing ticagrelor non-responsiveness.


Assuntos
Inibidores da Agregação Plaquetária , Stents , Algoritmos , Clopidogrel , Humanos , Inibidores da Agregação Plaquetária/uso terapêutico , Ticagrelor/uso terapêutico
8.
Curr Neurovasc Res ; 18(3): 364-369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34736380

RESUMO

The correlation of neuroinflammation with the development of cerebral vasospasm following subarachnoid hemorrhage has been well documented in the literature; both clinical and preclinical. The exact mechanisms by which this process occurs, however, are poorly elucidated. Recent evidence indicates that interleukin-6 is not only an important prognostic biomarker for subarachnoid hemorrhage and subsequent vasospasm development but also an integral component in the progression of injury following initial insult. In this review, we briefly highlight other pathways under investigation and focus heavily on what has been discovered regarding the role of interleukin 6 and cerebral vasospasm following subarachnoid hemorrhage. A proposed mechanistic pathway is highlighted in written and graphical format. A discussion regarding the human correlative findings and initial pre-clinical mechanistic studies is addressed. Finally, in the future investigation section, innovative developments and a clear description of areas warranting further scientific inquiry are emphasized. This review will catalyze continued discovery in this area of emerging significance and aid in the quest for effective vasospasm treatment where limited clinical therapeutics currently exist.


Assuntos
Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Humanos , Interleucina-6 , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Vasoespasmo Intracraniano/tratamento farmacológico , Vasoespasmo Intracraniano/etiologia
9.
Biochem Biophys Res Commun ; 582: 105-110, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710824

RESUMO

BACKGROUND: Cell-free heme-containing proteins mediate endothelial injury in a variety of disease states including subarachnoid hemorrhage and sepsis by increasing endothelial permeability. Inflammatory cells are also attracted to sites of vascular injury by monocyte chemotactic protein 1 (MCP-1) and other chemokines. We have identified a novel peptide hormone, adropin, that protects against hemoglobin-induced endothelial permeability and MCP-1-induced macrophage migration. METHODS: Human microvascular endothelial cells were exposed to cell-free hemoglobin (CFH) with and without adropin treatment before measuring monolayer permeability using a FITC-dextran tracer assay. mRNA and culture media were collected for molecular studies. We also assessed the effect of adropin on macrophage movement across the endothelial monolayer using an MCP-1-induced migration assay. RESULTS: CFH exposure decreases adropin expression and increases paracellular permeability of human endothelial cells. Treating cells with synthetic adropin protects against the increased permeability observed during the natural injury progression. Cell viability was similar in all groups and Hmox1 expression was not affected by adropin treatment. MCP-1 potently induced macrophage migration across the endothelial monolayer and adropin treatment effectively reduced this phenomenon. CONCLUSIONS: Endothelial injury is a hallmark of many disease states. Our results suggest that adropin treatment could be a valuable strategy in preventing heme-mediated endothelial injury and macrophage infiltration. Further investigation of adropin therapy in animal models and human tissue specimens is needed.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/antagonistas & inibidores , Células Endoteliais/efeitos dos fármacos , Hemoglobinas/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Macrófagos/efeitos dos fármacos , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Quimiocina CCL2/farmacologia , Citoproteção/fisiologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hemoglobinas/farmacologia , Humanos , Macrófagos/citologia
10.
Surg Neurol Int ; 12: 297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221627

RESUMO

BACKGROUND: Inflammatory myofibroblastic tumor is a rare, poorly understood tumor that has been found to occur in almost every organ tissue. Its location within the central nervous system is uncommon, and patients tend to present with nonspecific symptoms. CASE DESCRIPTION: A female in her eighth decade presented to neurosurgery clinic with complaints of headache and dizziness. Initial imaging was consistent with a low-grade, benign brain lesion in the region of the left choroidal fissure. She was recommended for observation but returned 1 month later with progressive symptoms and doubling of the lesion size. She underwent surgical resection and was found to have an IMT arising from the wall of the left anterior choroidal artery. CONCLUSION: Intracranial IMT remains a rare and poorly understood entity. The present case demonstrates a novel presentation of IMT in an adult patient and exemplifies the heterogeneity of the disease presentation.

11.
J Neuroinflammation ; 18(1): 163, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34284798

RESUMO

BACKGROUND: The NLRP3 inflammasome is a critical mediator of several vascular diseases through positive regulation of proinflammatory pathways. In this study, we defined the role of NLRP3 in both the acute and delayed phases following subarachnoid hemorrhage (SAH). SAH is associated with devastating early brain injury (EBI) in the acute phase, and those that survive remain at risk for developing delayed cerebral ischemia (DCI) due to cerebral vasospasm. Current therapies are not effective in preventing the morbidity and mortality associated with EBI and DCI. NLRP3 activation is known to drive IL-1ß production and stimulate microglia reactivity, both hallmarks of SAH pathology; thus, we hypothesized that inhibition of NLRP3 could alleviate SAH-induced vascular dysfunction and functional deficits. METHODS: We studied NLRP3 in an anterior circulation autologous blood injection model of SAH in mice. Mice were randomized to either sham surgery + vehicle, SAH + vehicle, or SAH + MCC950 (a selective NLRP3 inhibitor). The acute phase was studied at 1 day post-SAH and delayed phase at 5 days post-SAH. RESULTS: NLRP3 inhibition improved outcomes at both 1 and 5 days post-SAH. In the acute (1 day post-SAH) phase, NLRP3 inhibition attenuated cerebral edema, tight junction disruption, microthrombosis, and microglial reactive morphology shift. Further, we observed a decrease in apoptosis of neurons in mice treated with MCC950. NLRP3 inhibition also prevented middle cerebral artery vasospasm in the delayed (5 days post-SAH) phase and blunted SAH-induced sensorimotor deficits. CONCLUSIONS: We demonstrate a novel association between NLRP3-mediated neuroinflammation and cerebrovascular dysfunction in both the early and delayed phases after SAH. MCC950 and other NLRP3 inhibitors could be promising tools in the development of therapeutics for EBI and DCI.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/fisiopatologia , Furanos/farmacologia , Indenos/farmacologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Hemorragia Subaracnóidea/patologia , Hemorragia Subaracnóidea/fisiopatologia , Sulfonamidas/farmacologia , Vasoespasmo Intracraniano , Animais , Apoptose/efeitos dos fármacos , Edema Encefálico/fisiopatologia , Lesões Encefálicas/complicações , Isquemia Encefálica/etiologia , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Feminino , Interleucina-1beta/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/patologia , Vasoespasmo Intracraniano/fisiopatologia
12.
Neurosurgery ; 86(4): 583-592, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31264696

RESUMO

BACKGROUND: Estrogen deficiency is associated with cerebral aneurysm rupture, but the precise mechanism is unknown. OBJECTIVE: To test the hypothesis that IL-6 is required for the increase in aneurysm rupture rate observed in estrogen-deficient mice. METHODS: We analyzed IL-6 expression in human cerebral aneurysms. We induced cerebral aneurysms in estrogen-deficient female C57BL/6 mice that had undergone 4-vinylcyclohexene diepoxide (VCD) treatment or bilateral ovariectomy (OVE). Mice were blindly randomized to selective IL-6 inhibition (IL-6 receptor [IL-6R] neutralizing antibody, n = 25) or control (isotype-matched IgG, n = 28). Murine cerebral arteries at the circle of Willis were assessed for aneurysm rupture and macrophage infiltration. RESULTS: IL-6 is expressed in human cerebral aneurysms, but not in control arteries. Serum IL-6 is elevated in ovariectomized female mice compared to sham control (14.3 ± 1.7 pg/mL vs 7.4 ± 1.5 pg/mL, P = .008). Selective IL-6R inhibition suppressed cerebral aneurysm rupture in estrogen-deficient mice compared with control (VCD: 31.6% vs 70.0%, P = .026; OVE: 28.6% vs 65.2%, P = .019). IL-6R inhibition had no effect on formation or rupture rate in wild-type mice. IL-6R neutralizing antibody significantly reduced macrophage infiltration at the circle of Willis (1.9 ± 0.2 vs 5.7 ± 0.6 cells/2500 µm2; n = 8 vs n = 15; P < .001). CONCLUSION: IL-6 is increased in the serum of estrogen-deficient mice and appears to play a role in promoting murine estrogen deficiency-associated cerebral aneurysm rupture via enhanced macrophage infiltration at the circle of Willis. Inhibition of IL-6 signaling via IL-6 receptor neutralizing antibody inhibits aneurysm rupture in estrogen-deficient mice. IL-6 receptor inhibition had no effect on aneurysm formation or rupture in wild-type animals.


Assuntos
Aneurisma Roto/metabolismo , Estrogênios/deficiência , Interleucina-6/metabolismo , Aneurisma Intracraniano/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Aneurisma Intracraniano/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia
13.
BMC Biol ; 17(1): 56, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311534

RESUMO

BACKGROUND: Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. RESULTS: By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. CONCLUSION: Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.


Assuntos
Cádmio/toxicidade , Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica , Resposta ao Choque Térmico/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , Splicing de RNA , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Resposta ao Choque Térmico/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA